Studies on the immunopharmacological activities of various plant species have provided evidence for the high therapeutic potential of different extracts. These represent a promising alternative to reduce the inflammatory processes and, thus, diseases related to inflammation. Numerous scientific studies strongly suggest that diet plays an essential role in inflammation, and that certain dietary factors can act as preventive or treatment methods to lower inflammation. In the present study, a novel lingonberry-based dietary supplement was investigated for the ability to suppress the inflammatory response in activated monocytes/macrophages. Based on cell viability/proliferation and cytotoxicity tests, concentrations between 40 and 130 µg/ml of the extracts showed a high viability/proliferation effect and no cytotoxic activity in monocyte/macrophage cells. To further investigate the anti-inflammatory potential of our novel lingonberry-based dietary supplement, we studied the effect of the extract on the inflammatory response in lipopolysaccharide (LPS)-stimulated macrophages. We found that the extract exhibited a strong anti-inflammatory potential by inhibiting the expression of major inflammatory cytokines [interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF)α] in activated monocyte/macrophage cells. The expression of IL-6 and IL-8 was subsequently validated by enzyme-linked immunosorbent assay (ELISA). In conclusion, we demonstrated that our product exhibits no cytotoxicity and suppresses inflammation, and thus can be considered a natural important tool for inflammation control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393499PMC
http://dx.doi.org/10.3892/etm.2021.10604DOI Listing

Publication Analysis

Top Keywords

dietary supplement
12
novel lingonberry-based
8
lingonberry-based dietary
8
inflammatory response
8
monocyte/macrophage cells
8
anti-inflammatory potential
8
il-6 il-8
8
inflammation
5
assessment cytotoxicity
4
cytotoxicity anti-inflammatory
4

Similar Publications

Synergistic defecation effects of subsp. BL-99 and fructooligosaccharide by modulating gut microbiota.

Front Immunol

January 2025

Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, Department of Nutrition and Health, China Agricultural University, Beijing, China.

Introduction: Synbiotics have revealed the possibility of improving constipation through gut microbiota. The synergistic efficacy of subsp. lactis BL-99 (BL-99) and fructooligosaccharide (FOS) on constipation have not been investigated.

View Article and Find Full Text PDF

Dietary supplements for prevention of Alzheimer's disease: and molecular docking studies.

Iran J Basic Med Sci

January 2025

Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki 12622, Cairo, Egypt.

Objectives: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in people over 65. The present research aimed to investigate the potential of different dietary supplements (DS) in preventing AD in an experimental animal model and study.

Materials And Methods: Three DS containing a mixture of wheat-germ oil and black pepper extract/or turmeric extract were prepared.

View Article and Find Full Text PDF

Natural products are ligands and in vitro inhibitors of Alzheimer's disease (AD) tau. Dihydromyricetin (DHM) bears chemical similarity to known natural product tau inhibitors. Despite having signature polyphenolic character, DHM is ostensibly hydrophobic owing to intermolecular hydrogen bonds that shield hydrophilic phenols.

View Article and Find Full Text PDF

The aim of this study is to investigate the protective potential of IM57, IR51, and IR62 strains, isolated from infant feces, and their mixture against inflammatory bowel disease (IBD). The strains exhibited robust antioxidant activities and anti-inflammatory properties in RAW 264.7 cells.

View Article and Find Full Text PDF

Exo- and Endo-1,5-α-L-Arabinanases and Prebiotic Arabino-Oligosaccharides Production.

J Microbiol Biotechnol

January 2025

Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea.

There is growing interest in pentose-based prebiotic oligosaccharides as alternatives to traditional hexose-based prebiotics. Among these, arabino-oligosaccharides (AOS), derived from the enzymatic hydrolysis of arabinan polymers, have gained significant attention. AOS can selectively stimulate the growth of beneficial gut bacteria, including and species, and contribute to health-benefit functions such as blood sugar control, positioning AOS as a promising synbiotic candidate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!