Long noncoding RNA (lncRNA) maternally expressed 8, small nucleolar RNA host gene (MEG8) has been widely reported for its pro-proliferative, anti-apoptotic and anti-inflammatory effects in diverse diseases. The aim of the present study was to investigate the effects and underlying mechanism of MEG8 on IL-1β-stimulated human osteoarthritis (OA) chondrocytes. C28/I2 chondrocytes were cultured under the stimulation of IL-1β to establish a cellular model of OA. Functional assays involving Cell Counting Kit-8 and flow cytometry were performed to determine proliferation and apoptosis in the cells. The protein expression levels of caspase-3 and inflammatory cytokines were detected using cell-based ELISA. The expression levels of PI3K/AKT pathway-related proteins were evaluated by western blotting. It was identified that MEG8 expression was increased in the cartilage of patients with OA and in IL-1β-treated C28/I2 cells. In C28/I2 cells, silencing of MEG8 expression noticeably triggered IL-1β-induced proliferation suppression, cell death and an inflammatory response. However, transfection with MEG8 displayed adverse effects. Furthermore, MEG8 overexpression prevented IL-1β-induced activation of the PI3K/AKT signaling pathway in C28/I2 cells. These data demonstrated that MEG8 exerted protective effects against IL-1β-induced apoptosis and inflammation of OA chondrocytes by regulating the PI3K/AKT signaling pathway. Thus, the present study demonstrates that MEG8 might be a promising target for the treatment of OA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393379 | PMC |
http://dx.doi.org/10.3892/etm.2021.10587 | DOI Listing |
Int J Rheum Dis
January 2025
Department of Orthopaedics, Shaanxi Rehbilitation Hospital, Xi'an, Shaanxi, China.
Background: Osteoarthritis (OA) is one of the most common bone disorders and has a serious impact on the quality of life of patients. LncRNA-HCP5 (HCP5) is downregulated in OA tissues. However, the latent function and regulatory mechanisms of HCP5 in OA are unclear.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India.
The cartilage possesses limited regenerative capacity, necessitating advanced approaches for its repair. This study introduces a bioink designed for cartilage tissue engineering (TE) by incorporating ionically cross-linkable alginate into the photo-cross-linkable MuMA bioink, resulting in a double cross-linked interpenetrating network (IPN) hydrogel. Additionally, hyaluronic acid (HA), a natural component of cartilage and synovial fluid, was added to enhance the scaffold's properties.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
Background: Osteoarthritis (OA) is a leading cause of pain, disability, and reduced mobility worldwide, characterized by metabolic imbalances in chondrocytes, extracellular matrix (ECM), and subchondral bone. Emerging evidence highlights the critical role of long non-coding RNAs (lncRNAs) in OA pathogenesis. This study focuses on lncRNA PTS-1, a novel lncRNA, to explore its function and regulatory mechanisms in OA progression.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopedics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China.
Background: Osteoarthritis (OA) is a common type of degenerative arthropathy. Previous studies have demonstrated that circular RNAs (circRNAs) are involved in the progression of OA. This study aimed to investigate the role and associated mechanism of circ_0075048 in OA.
View Article and Find Full Text PDFMicrobiol Immunol
December 2024
Department of Sports Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi, China.
Osteoarthritis (OA) is the most common joint disease and its pathogenic mechanism remains to be ensured. This study focused on the regulatory relation between B-cell lymphoma 6 (BCL6) and G-protein-coupled receptor 61 (GPR61) underlying IL-1β in OA. Real-time quantitative polymerase chain reaction and western blot were performed for mRNA and protein detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!