Long non-coding RNA LINC00657 has a critical role in multiple cancers. The aim of the present study was to investigate the regulatory effect of LINC00657 in pancreatic cancer (PC) and reveal its molecular mechanism of function. The expression levels of LINC00657 and microRNA (miR)-520h were detected by reverse transcription-quantitative PCR in PC tissues and cell lines. MTT, wound healing and Transwell assays were used to detect cell viability, migration and invasion, respectively. Dual-luciferase reporter assay was utilized to examine the relationship between LINC00657 and miR-520h and that between miR-520h and cyclin-dependent kinases regulatory subunit 1 (CKS1B). Western blotting was performed to detect CKS1B expression. The expression levels of LINC00657 and CKS1B were enhanced and miR-520h expression level was reduced in PC tissues and cell lines compared with adjacent normal tissues or HPDE6 cells. LINC00657 knockdown decreased the viability, migration and invasion of PC cells. Additionally, LINC00657 targeted miR-520h and negatively modulated miR-520h expression. Furthermore, miR-520h overexpression inhibited the viability, migration and invasion of PC cells. In addition, miR-520h targeted CKS1B and reversely regulated CKS1B expression. miR-520h inhibition and CKS1B overexpression alleviated the inhibition effect of LINC00657 knockdown on the viability, migration and invasion of PACA-2 PC cells. In conclusion, the results of the present study demonstrated that LINC00657 knockdown repressed the viability, migration and invasion of PC cells via targeting the miR-520h/CKS1B axis, which may offer a future target for PC therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393733PMC
http://dx.doi.org/10.3892/etm.2021.10576DOI Listing

Publication Analysis

Top Keywords

viability migration
24
migration invasion
24
linc00657 knockdown
12
invasion cells
12
linc00657
9
mir-520h
9
pancreatic cancer
8
mir-520h/cks1b axis
8
expression levels
8
levels linc00657
8

Similar Publications

Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.

View Article and Find Full Text PDF

This study was designed to assess the effect of brentuximab vedotin on several breast cancer cell lines in terms of promoting apoptosis and managing cancer progression. Additionally, the study investigated the potential of repurposing this drug for new therapeutic reasons, beyond its original indications. The study evaluates the cytotoxic effects of Brentuximab vedotin across five cell lines: normal human skin fibroblasts (HSF), three breast cancer cell lines (MCF-7, MDA-MB-231, and T-47D), and histiocytic lymphoma (U-937).

View Article and Find Full Text PDF

Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.

View Article and Find Full Text PDF

The colon possesses a unique physiological environment among human organs, where there is a highly viscous body fluid layer called the mucus layer above colonic epithelial cells. Dysfunction of the mucus layer not only contributes to the occurrence of colorectal cancer (CRC) but also plays an important role in the development of chemoresistance in CRC. Although viscosity is an essential property of the mucus layer, it remains elusive how viscosity affects chemoresistance in colon cancer cells.

View Article and Find Full Text PDF

β-elemene has a variety of anti-inflammatory, antioxidant, and antitumor effects. Currently, the influence of β-elemene on adrenocortical carcinoma (ACC) malignant progression and action mechanism remains unclear. This research aims to explore the influence and action mechanism of β-elemene on ACC progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!