Two-dimensional materials are promising candidates for future electronics due to unmatched device performance at atomic limit and low-temperature heterogeneous integration. To adopt these emerging materials in computing and optoelectronic systems, back end of line (BEOL) integration with mainstream technologies is needed. Here, we show the integration of large-area MoS thin-film transistors (TFTs) with nitride micro light-emitting diodes (LEDs) through a BEOL process and demonstrate high-resolution displays. The MoS transistors exhibit median mobility of 54 cm Vs , 210 μA μm drive current and excellent uniformity. The TFTs can drive micrometre-sized LEDs to 7.1 × 10 cd m luminance under low voltage. Comprehensive analysis on driving capability, response time, power consumption and modulation scheme indicates that MoS TFTs are suitable for a range of display applications up to the high resolution and brightness limit. We further demonstrate prototypical 32 × 32 active-matrix displays at 1,270 pixels-per-inch resolution. Moreover, our process is fully monolithic, low-temperature, scalable and compatible with microelectronic processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41565-021-00966-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!