Background: While ozone levels in the USA have decreased since the 1980s, the Denver Metro North Front Range (DMNFR) region remains in nonattainment of the National Ambient Air Quality Standard (NAAQS).
Objective: To estimate the warm season ozone climate penalty to characterize its impact on Colorado Front Range NAAQS attainment and health equity.
Methods: May to October ozone concentrations were estimated using spatio-temporal land-use regression models accounting for climate and weather patterns. The ozone climate penalty was defined as the difference between the 2010s concentrations and concentrations predicted using daily 2010s weather adjusted to match the 1950s climate, holding constant other factors affecting ozone formation.
Results: The ozone climate penalty was 0.5-1.0 ppb for 8-h max ozone concentrations. The highest penalty was around major urban centers and later in the summer. The penalty was positively associated with census tract-level percentage of Hispanic/Latino residents, children living within 100-200% of the federal poverty level, and residents with asthma, diabetes, fair or poor health status, or lacking health insurance.
Significance: The penalty increased the DMNFR ozone NAAQS design values, delaying extrapolated future attainment of the 2008 and 2015 ozone standards by approximately 2 years each, to 2025 and 2035, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9349035 | PMC |
http://dx.doi.org/10.1038/s41370-021-00375-9 | DOI Listing |
Biomedicines
January 2025
Frankel Cardiovascular Center, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
Comorbidities related to cardiovascular disease (CVD) and environmental pollution have emerged as serious concerns. The exposome concept underscores the cumulative impact of environmental factors, including climate change, air pollution, chemicals like PFAS, and heavy metals, on cardiovascular health. Chronic exposure to these pollutants contributes to inflammation, oxidative stress, and endothelial dysfunction, further exacerbating the global burden of CVDs.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2024
Institute of Integrated Atmospheric Environment, 1-2-8 Koraku, Bunkyo, Tokyo 112-0004, Japan.
Concerns regarding the health risks associated with employe exposure to volatile chemicals during gasoline refueling necessitates rigorous investigation and effective countermeasures. This study aims to evaluate the efficacy of vapor recovery systems in mitigating exposure risks during gasoline refueling. Employee exposure to volatile organic compounds, aldehydes, carbon monoxide, and fine particulate matter (PM) was assessed at gasoline stations with and without vapor recovery systems.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China. Electronic address:
Nitrogen heterocyclic antibiotics (NHAs) pollution poses a significant threat to aquatic ecosystems. Ozonation (O) pretreatment is beneficial for the removal of total nitrogen (TN) in antibiotics by facilitating subsequent biological treatment. However, nitrogen transformation and bacterial community responses when treating NHAs by O-coupled biological processes remain unclear.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China.
Nitryl chloride (ClNO) is a key precursor of chlorine radicals, influencing atmospheric oxidation and secondary pollutants formation. Few studies have examined the ClNO chemistry from the perspective of the planetary boundary layer. Here, we conducted a vertically resolved investigation of ClNO at six heights (ranging from 5 to 335 m) on a 356 m tower in the Pearl River Delta, China, during winter 2021.
View Article and Find Full Text PDFJ Am Coll Cardiol
January 2025
Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Medical Faculty, LMU Munich, Munich, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!