Frequency multiplexed coherent φ-OTDR.

Sci Rep

U.S. Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC, 20375, USA.

Published: September 2021

We present a comprehensive analysis of a frequency multiplexed phase-measuring φ-OTDR sensor platform. The system uses a train of frequency-shifted pulses to increase the average power injected into the fiber and provide a diversity of uncorrelated Rayleigh backscattering measurements. Through a combination of simulations, numerical analysis, and experimental measurements, we show that this approach not only enables lower noise and mitigates interference fading, but also improves the sensor linearity. We investigate the sensor dependence on the length of the pulse train and characterize the sensor performance as a function of range, demonstrating operation from 1 to 50 km. Despite its relative simplicity, this platform enables state-of-the-art performance, including low crosstalk, high linearity, and a minimum detectable strain of only 0.6 p[Formula: see text] in a 10 km fiber with 10 m spatial resolution and a bandwidth of 5 kHz.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429562PMC
http://dx.doi.org/10.1038/s41598-021-97647-zDOI Listing

Publication Analysis

Top Keywords

frequency multiplexed
8
multiplexed coherent
4
coherent φ-otdr
4
φ-otdr comprehensive
4
comprehensive analysis
4
analysis frequency
4
multiplexed phase-measuring
4
phase-measuring φ-otdr
4
sensor
4
φ-otdr sensor
4

Similar Publications

Background: Microscopic polyangiitis (MPA) is a severe multisystem autoimmune disease featured by small-vessel vasculitis with few or no immune complex, also has a significant genetic predisposition. Growing evidence has confirmed that STAT4 gene is tightly associated with multiple autoimmune diseases, but its contribution to MPA onset is still elusive.

Objective: The aim was to investigated the association between STAT4 gene polymorphisms (rs7572482, rs7574865 and rs12991409) and MPA susceptibility in a Guangxi population of China.

View Article and Find Full Text PDF

Assessment of antibiotic resistance and virulence in Escherichia coli strains isolated from poultry in Spain.

Poult Sci

January 2025

Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539 Castellón, Spain; Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain. Electronic address:

Colibacillosis is a disease caused by avian pathogenic Escherichia coli (APEC) isolates which results in significant morbidity and mortality in poultry, as well as in economic loses. In order to identify APEC strains in a population of 898 E. coli isolates from poultry samples collected from different avian flocks located in the Valencian Region, Spain, we analysed the most significantly related to highly-pathogenic colibacillosis virulence-associated genes (VAGs) (hlyF, iroN, iss, iutA and ompT) by multiplex real-time polymerase chain reaction (RT-PCR).

View Article and Find Full Text PDF

Acute respiratory infections (ARIs) are a leading cause of death in children under five globally. The seasonal trends and profiles of respiratory viruses vary by region and season. Due to limited information and the population's vulnerability, we conducted the hospital-based surveillance of respiratory viruses in Eastern Uttar Pradesh.

View Article and Find Full Text PDF

Target detection is a core function of integrated sensing and communication (ISAC) systems. The traditional likelihood ratio test (LRT) target detection algorithm performs inadequately under low signal-to-noise ratio (SNR) conditions, and the performance of mainstream orthogonal frequency division multiplexing (OFDM) waveforms declines sharply in high-speed scenarios. To address these issues, an information-theory-based orthogonal time frequency space (OTFS)-ISAC target detection processing framework is proposed.

View Article and Find Full Text PDF

Remote Radio Frequency Sensing Based on 5G New Radio Positioning Reference Signals.

Sensors (Basel)

January 2025

Institute of Telecommunications, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland.

In this paper, the idea of a radar based on orthogonal frequency division multiplexing (OFDM) is applied to 5G NR Positioning Reference Signals (PRS). This study demonstrates how the estimation of the communication channel using the PRS can be applied for the identification of objects moving near the 5G NR receiver. In this context, this refers to a 5G NR base station capable of detecting a high-speed train (HST).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!