Dynamic prokaryotic communities in the dark western Mediterranean Sea.

Sci Rep

Instituto Español de Oceanografía, Centre Oceanogràfic de Les Balears, Ecosystem Oceanography Group (GRECO), Moll de Ponent s/n 07015, Palma, Spain.

Published: September 2021

Dark ocean microbial dynamics are fundamental to understand ecosystem metabolism and ocean biogeochemical processes. Yet, the ecological response of deep ocean communities to environmental perturbations remains largely unknown. Temporal and spatial dynamics of the meso- and bathypelagic prokaryotic communities were assessed throughout a 2-year seasonal sampling across the western Mediterranean Sea. A common pattern of prokaryotic communities' depth stratification was observed across the different regions and throughout the seasons. However, sporadic and drastic alterations of the community composition and diversity occurred either at specific water masses or throughout the aphotic zone and at a basin scale. Environmental changes resulted in a major increase in the abundance of rare or low abundant phylotypes and a profound change of the community composition. Our study evidences the temporal dynamism of dark ocean prokaryotic communities, exhibiting long periods of stability but also drastic changes, with implications in community metabolism and carbon fluxes. Taken together, the results highlight the importance of monitoring the temporal patterns of dark ocean prokaryotic communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429679PMC
http://dx.doi.org/10.1038/s41598-021-96992-3DOI Listing

Publication Analysis

Top Keywords

prokaryotic communities
16
dark ocean
12
western mediterranean
8
mediterranean sea
8
community composition
8
ocean prokaryotic
8
communities
5
ocean
5
dynamic prokaryotic
4
dark
4

Similar Publications

As conservation agricultural practices continue to spread, there is a need to understand how reduced tillage impacts soil microbes. Effects of no till (NT) and disk till (DT) relative to moldboard plow (MP) were investigated in a long-term experiment established on Chernozem. Results showed that conservation practices, especially NT, increased total, active and microbial biomass carbon.

View Article and Find Full Text PDF

Unlabelled: Glacier-fed streams are permanently cold, ultra-oligotrophic, and physically unstable environments, yet microbial life thrives in benthic biofilm communities. Within biofilms, microorganisms rely on secondary metabolites for communication and competition. However, the diversity and genetic potential of secondary metabolites in glacier-fed stream biofilms remain poorly understood.

View Article and Find Full Text PDF

Knowing mechanisms that facilitate the emergence of post-glacial ecosystems is urgently required given rapid recent glacial retreat in high latitude and high elevation regions. We examined the effect of nutrient hotspots created via communal dung deposition by wild, native Andean camelids on soil abiotic and biotic properties and plant cover in the rapidly deglaciating Cordillera Vilcanota, southeastern Peru. Animal-modified proglacial soils were significantly enriched in all measured edaphic properties compared to reference glacial-till soils of the same age adjacent to animal-modified soil patches.

View Article and Find Full Text PDF

Small molecules as modulators of phage-bacteria interactions.

Curr Opin Chem Biol

December 2024

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA. Electronic address:

Bacteriophages (phages) play a critical role in microbial ecology and evolution. Their interactions with bacteria are influenced by a complex network of chemical signals derived from a wide range of sources including both endogenous bacterial metabolites and exogenous environmental compounds. In this review, we highlight two areas where small molecules play a pivotal role in modulating phage behaviors.

View Article and Find Full Text PDF

Diversity and functional traits based indigenous rhizosphere associated phosphate solubilizing bacteria for sustainable production of rice.

Front Microbiol

December 2024

Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan.

Introduction: Rice, particularly Basmati rice, holds significant global importance as a staple food. The indiscriminate use of phosphate-based fertilizers during rice production has led to high residual levels of these chemicals in soil, impacting soil health and fertility. This study aimed to address this challenge by investigating the potential of phosphate solubilizing bacteria (PSB) in improving soil fertility and boosting the growth of Basmati rice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!