A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrating thermal infrared stream temperature imagery and spatial stream network models to understand natural spatial thermal variability in streams. | LitMetric

Under a warmer future climate, thermal refuges could facilitate the persistence of species relying on cold-water habitat. Often these refuges are small and easily missed or smoothed out by averaging in models. Thermal infrared (TIR) imagery can provide empirical water surface temperatures that capture these features at a high spatial resolution (<1 m) and over tens of kilometers. Our study examined how TIR data could be used along with spatial stream network (SSN) models to characterize thermal regimes spatially in the Middle Fork John Day (MFJD) River mainstem (Oregon, USA). We characterized thermal variation in seven TIR longitudinal temperature profiles along the MFJD mainstem and compared them with SSN model predictions of stream temperature (for the same time periods as the TIR profiles). TIR profiles identified reaches of the MFJD mainstem with consistently cooler temperatures across years that were not consistently captured by the SSN prediction models. SSN predictions along the mainstem identified ~80% of the 1-km reach scale temperature warming or cooling trends observed in the TIR profiles. We assessed whether landscape features (e.g., tributary junctions, valley confinement, geomorphic reach classifications) could explain the fine-scale thermal heterogeneity in the TIR profiles (after accounting for the reach-scale temperature variability predicted by the SSN model) by fitting SSN models using the TIR profile observation points. Only the distance to the nearest upstream tributary was identified as a statistically significant landscape feature for explaining some of the thermal variability in the TIR profile data. When combined, TIR data and SSN models provide a data-rich evaluation of stream temperature captured in TIR imagery and a spatially extensive prediction of the network thermal diversity from the outlet to the headwaters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509081PMC
http://dx.doi.org/10.1016/j.jtherbio.2021.103028DOI Listing

Publication Analysis

Top Keywords

thermal infrared
8
integrating thermal
4
infrared stream
4
stream temperature
4
temperature imagery
4
imagery spatial
4
spatial stream
4
stream network
4
network models
4
models understand
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!