Background: Cutaneous leishmaniasis (CL) is endemic in 70 countries worldwide. Nepal is considered non-endemic for CL and hence the control program is targeted to visceral leishmaniasis (VL) only. Here, we report the emergence of CL cases in different parts of Nepal.
Methods: We analyzed the CL and VL cases reported to Epidemiology and Diseases Control Division (EDCD), Ministry of Health and Population, Nepal through District Health Information System 2 (DHIS-2) and Early Warning and Reporting System (EWRS) during the past 4 years (2016-2019). Any laboratory-confirmed case was included in the study. Demographic and clinical details of each patient were transcribed into Excel sheets, verified with the case report forms and analyzed.
Results: VL has been reported in Nepal since 1980, but CL was reported very recently. From 2016 to 2019, 42 CL cases were reported from 26 different hospitals to EDCD which had been diagnosed on the basis of clinical presentation, and laboratory findings (demonstration of amastigotes in Giemsa-stained smears and rK39 test results). Majority of the patients (31.0%, 13/42) visited to the hospital within 1-6 months of onset of lesions. Facial region (38.1%, 16/42) was the common place where lesions were found ompared to other exposed parts of the body. CL was successfully treated with miltefosine for 28 days. The majority of CL patients did not have history of travel outside the endemic areas and there was no report of sandfly from these areas.
Conclusion: These evidences highlight that the Government of Nepal need to pay more efforts on CL and include it in differential diagnosis by clinicians, and plan for an active surveillance when the country is targeting leishmaniasis elimination by the year 2025 with the decreasing number of VL cases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428101 | PMC |
http://dx.doi.org/10.1186/s41182-021-00359-3 | DOI Listing |
Indian J Med Res
November 2024
Department of Microbiology, Aarupadai Veedu Medical College & Hospital, Puducherry, India.
Background & objectives The emergence of drug resistance in leishmaniasis has remained a concern. Even new drugs have been found to be less effective within a few years of their use. Coupled with their related side effects and cost-effectiveness, this has prompted the search for alternative therapeutic options.
View Article and Find Full Text PDFIran J Parasitol
January 2024
Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Rodents are the primary reservoir hosts for zoonotic cutaneous leishmaniasis (ZCL) caused by . Knowing reservoir hosts is crucial for leishmaniasis surveillance and control programs in endemic areas. In this study, we examined an archived spleen of obtained during a pest control program in 2000 in Tehran, the capital of Iran.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan.
Background: Mucocutaneous leishmaniasis (MCL) is a severe form of leishmaniasis causing chronic and destructive lesions. Accurate diagnosis is crucial for effective treatment. Traditional methods, such as the Montenegro skin test is delayed hypersensitivity test.
View Article and Find Full Text PDFTrop Med Infect Dis
December 2024
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium.
is a vector of , the causative agent of cutaneous leishmaniasis. This study assessed the abundance and distribution of in different habitats and human houses situated at varying distances from hyrax (reservoir host) dwellings, in Wolaita Zone, southern Ethiopia. Sandflies were collected from January 2020 to December 2021 using CDC light traps, sticky paper traps, and locally made emergence traps.
View Article and Find Full Text PDFDermatopathology (Basel)
November 2024
Second Dermatology Department, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
The dermoscopic rainbow pattern (RP), also known as polychromatic pattern, is characterized by a multicolored appearance, resulting from the dispersion of polarized light as it penetrates various tissue components. Its separation into different wavelengths occurs according to the physics principles of scattering, absorption, and interference of light, creating the optical effect of RP. Even though the RP is regarded as a highly specific dermoscopic indicator of Kaposi's sarcoma, in the medical literature, it has also been documented as an atypical dermoscopic finding of other non-Kaposi skin entities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!