A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The increasing impact of length of stay "outliers" on length of stay at an urban academic hospital. | LitMetric

AI Article Synopsis

  • The study analyzes the impact of "length of stay outliers" on hospital efficiency over five years in a large urban hospital.
  • It found that both the mean length of stay for outliers and the number of outlier cases increased significantly, indicating they account for a growing percentage of total hospital days.
  • The findings suggest that excluding these outliers from data reporting could misrepresent their effect, and the hospital should consider targeted interventions to manage these cases effectively.

Article Abstract

Background: As healthcare systems strive for efficiency, hospital "length of stay outliers" have the potential to significantly impact a hospital's overall utilization. There is a tendency to exclude such "outlier" stays in local quality improvement and data reporting due to their assumed rare occurrence and disproportionate ability to skew mean and other summary data. This study sought to assess the influence of length of stay (LOS) outliers on inpatient length of stay and hospital capacity over a 5-year period at a large urban academic medical center.

Methods: From January 2014 through December 2019, 169,645 consecutive inpatient cases were analyzed and assigned an expected LOS based on national academic center benchmarks. Cases in the top 1% of national sample LOS by diagnosis were flagged as length of stay outliers.

Results: From 2014 to 2019, mean outlier LOS increased (40.98 to 45.11 days), as did inpatient LOS with outliers excluded (5.63 to 6.19 days). Outlier cases increased both in number (from 297 to 412) and as a percent of total discharges (0.98 to 1.56%), and outlier patient days increased from 6.7 to 9.8% of total inpatient plus observation days over the study period.

Conclusions: Outlier cases utilize a disproportionate and increasing share of hospital resources and available beds. The current tendency to exclude such outlier stays in data reporting due to assumed rare occurrence may need to be revisited. Outlier stays require distinct and targeted interventions to appropriately reduce length of stay to both improve patient care and maintain hospital capacity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8427900PMC
http://dx.doi.org/10.1186/s12913-021-06972-6DOI Listing

Publication Analysis

Top Keywords

length stay
24
urban academic
8
tendency exclude
8
data reporting
8
reporting assumed
8
assumed rare
8
rare occurrence
8
los outliers
8
hospital capacity
8
outlier cases
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!