The ability of tumor cells to evade apoptosis is established as one of the hallmarks of cancer. The deregulation of apoptotic pathways conveys a survival advantage enabling cancer cells to develop multi-drug resistance (MDR), a complex tumor phenotype referring to concurrent resistance toward agents with different function and/or structure. Proteins implicated in the intrinsic pathway of apoptosis, including the Bcl-2 superfamily and Inhibitors of Apoptosis (IAP) family members, as well as their regulator, tumor suppressor p53, have been implicated in the development of MDR in many cancer types. The PIK/AKT pathway is pivotal in promoting survival and proliferation and is often overactive in MDR tumors. In addition, the tumor microenvironment, particularly factors secreted by cancer-associated fibroblasts, can inhibit apoptosis in cancer cells and reduce the effectiveness of different anti-cancer drugs. In this review, we describe the main alterations that occur in apoptosis-and related pathways to promote MDR. We also summarize the main therapeutic approaches against resistant tumors, including agents targeting Bcl-2 family members, small molecule inhibitors against IAPs or AKT and agents of natural origin that may be used as monotherapy or in combination with conventional therapeutics. Finally, we highlight the potential of therapeutic exploitation of epigenetic modifications to reverse the MDR phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8430856PMC
http://dx.doi.org/10.3390/cancers13174363DOI Listing

Publication Analysis

Top Keywords

multi-drug resistance
8
cancer cells
8
family members
8
apoptosis
5
cancer
5
mdr
5
apoptosis deregulation
4
deregulation development
4
development cancer
4
cancer multi-drug
4

Similar Publications

Chryseobacterium indologenes is a rare human pathogen which is nowadays considered an emerging fearsome organism because of its upcoming antibiotic resistance. We present a quite unique case of a multi drug resistant C. indologenes surgical wound infection in a patient submitted to cannulated screw fixation of a displaced medial malleolus fracture.

View Article and Find Full Text PDF

Introduction: The methicillin-resistant Staphylococcus aureus (MRSA) genome varies by geographical location. This study aims to determine the genomic characteristics of MRSA using whole-genome sequencing (WGS) data from medical centers in Mexico and to explore the associations between antimicrobial resistance genes and virulence factors.

Methods: This study included 27 clinical isolates collected from sterile sites at eight centers in Mexico in 2022 and 2023.

View Article and Find Full Text PDF

Based on the fact that beta-lactam antibiotics demonstrate time-dependent killing, different dosing strategies have been implemented to increase the time that free (f) (unbound) antibiotic concentrations remain above the Minimal Inhibitory Concentration (MIC), including prolonged and continuous infusion. Multiple studies have been performed that compared continuous with traditional intermittent infusion to improve outcomes in patients with severe sepsis and/or septic shock. These studies have yielded inconsistent results for patients as measured by clinical response to treatment and mortality due to heterogeneity of included patients, pathogens, dosing strategies and the absence of Therapeutic Drug Monitoring (TDM).

View Article and Find Full Text PDF

Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.

View Article and Find Full Text PDF

Integrated Genomics Reveal Potential Resistance Mechanisms of PANoptosis-Associated Genes in Acute Myeloid Leukemia.

Mol Carcinog

January 2025

Institute of Precision Medicine, The First Affiliated Hospital; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Acute myeloid leukemia (AML) is marked by the proliferation of abnormal myeloid progenitor cells in the bone marrow and blood, leading to low cure rates despite new drug approvals from 2017 to 2018. Current therapies often fail due to the emergence of drug resistance mechanisms, such as those involving anti-apoptotic pathways and immune evasion, highlighting an urgent need for novel approaches to overcome these limitations. Programmed cell death (PCD) is crucial for tissue homeostasis, with PANoptosis-a form of PCD integrating pyroptosis, apoptosis, and necroptosis-recently identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!