Plasma-induced free-radical polymerizations rely on the formation of radical species to initiate polymerization, leading to some extent of monomer fragmentation. In this work, the plasma-induced polymerization of an allyl ether-substituted six-membered cyclic carbonate (A6CC) is demonstrated and emphasizes the retention of the cyclic carbonate moieties. Taking advantage of the low polymerization tendency of allyl monomers, the characterization of the oligomeric species is studied to obtain insights into the effect of plasma exposure on inducing free-radical polymerization. In less than 5 min of plasma exposure, a monomer conversion close to 90% is obtained. The molecular analysis of the oligomers by gel permeation chromatography coupled with high-resolution mass spectrometry (GPC-HRMS) further confirms the high preservation of the cyclic structure and, based on the detected end groups, points to hydrogen abstraction as the main contributor to the initiation and termination of polymer chain growth. These results demonstrate that the elaboration of surfaces functionalized with cyclic carbonates could be readily elaborated by atmospheric-pressure plasmas, for instance, by copolymerization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434537 | PMC |
http://dx.doi.org/10.3390/polym13172856 | DOI Listing |
Mikrochim Acta
December 2024
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
East China Normal University, School of Chemistry and Molecular Engineering, 3663 N. Zhongshan Rd., 200062, Shanghai, CHINA.
We present a novel electrochemical dicarboxylation of epoxides with CO2, characterized by the cleavage of two C-O single bonds. Not only are vinyl epoxides viable, but cyclic carbonates also serve as effective substrates, facilitating the synthesis of E-configured adipic and octanedioic acids with high chemo-, regio-, and stereoselectivity. The synthetic practicality is further highlighted by the diverse functionalizations of the resulting multifunctional diacids.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123, Trento, Italy.
In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
The CO-epoxide addition to cyclic carbonate is of great significance but usually requires high temperatures and CO pressures. Herein, a spirobifluorene-based porous organic polymer catalyst is designed with a Co-salen complex immobilized on the backbone (ST-CoSalen-POP) to enable CO fixation under mild conditions. ST-CoSalen-POP possesses a high Co-loading content (9.
View Article and Find Full Text PDFNanotechnol Sci Appl
December 2024
Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland.
Introduction: The rapid growth of flexible and wearable electronics has created a need for materials that offer both mechanical durability and high conductivity. Textile electronics, which integrate electronic pathways into fabrics, are pivotal in this field but face challenges in maintaining stable electrical performance under mechanical strain. This study develops highly stretchable silver multi-walled carbon nanotube (Ag-MWCNT) composites, tailored for screen printing and heat-transfer methods, to address these challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!