The article focuses on a high-resolution ultrasound sensor for real-time monitoring of liquid analytes in cylindrical pipes, tubes, or capillaries. The development of such a sensor faces the challenges of acoustic energy losses, including dissipation at liquid/solid interface and acoustic wave radiation along the pipe. Furthermore, we consider acoustic resonant mode coupling and mode conversion. We show how the concept of phononic crystals can be applied to solve these problems and achieve the maximum theoretically possible Q-factor for resonant ultrasonic sensors. We propose an approach for excitation and measurement of an isolated radial resonant mode with minimal internal losses. The acoustic energy is effectively localized in a narrow probing area due to the introduction of periodically arranged sectioned rings around the tube. We present a sensor design concept, which optimizes the coupling between the tubular resonator and external piezoelectric transducers. We introduce a 2D-phononic crystal in the probing region for this purpose. The Q-factor of the proposed structures show the high prospects for phononic crystal pipe sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434680 | PMC |
http://dx.doi.org/10.3390/s21175982 | DOI Listing |
Small
January 2025
Department of Physics, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
In this study, we investigate how modulating organic spacers in perovskites influences their X-ray detection performance and reveal the mechanism of low-dose detection with high sensitivity using femtosecond-transient absorption spectroscopy (fs-TAS). Particularly, we employ N,N,N',N'-tetramethyl-1,4-phenylenediammonium (TMPDA) and N,N-dimethylphenylene-p-diammonium (DPDA) as organic spacers to synthesize 2D perovskite single crystals (SCs). We find that DPDA-based SCs exhibit reduced interplanar spacing between inorganic layers, leading to increased lattice packing.
View Article and Find Full Text PDFSci Rep
January 2025
TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt.
A wealth of details regarding an individual's state of health, like a person's respiratory and metabolic functioning, can be studied by analyzing the volatile molecules and atoms in human exhaled breath. Besides, the salinity of seawater is a crucial factor in understanding its characteristics because any variation in the salinity of seawater represents the variations in the hydrological, biological, and chemical distributions. In this paper, a symmetrical one-dimensional phononic structure is theoretically designed using two symmetrical crystals separated with a defective cavity.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties.
View Article and Find Full Text PDFACS Nano
January 2025
School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.
The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, University of Oviedo, Oviedo 33006, Spain.
Polaritons are central to the development of nanophotonics, as they provide mechanisms for manipulating light at the nanoscale. A key advancement has been the demonstration of polariton canalization in which the energy flow is directed along a single direction. An intriguing case is the canalization of ray polaritons, characterized by an enhanced density of optical states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!