Gait analysis based on inertial sensors has become an effective method of quantifying movement mechanics, such as joint kinematics and kinetics. Machine learning techniques are used to reliably predict joint mechanics directly from streams of IMU signals for various activities. These data-driven models require comprehensive and representative training datasets to be generalizable across the movement variability seen in the population at large. Bottlenecks in model development frequently occur due to the lack of sufficient training data and the significant time and resources necessary to acquire these datasets. Reliable methods to generate synthetic biomechanical training data could streamline model development and potentially improve model performance. In this study, we developed a methodology to generate synthetic kinematics and the associated predicted IMU signals using open source musculoskeletal modeling software. These synthetic data were used to train neural networks to predict three degree-of-freedom joint rotations at the hip and knee during gait either in lieu of or along with previously measured experimental gait data. The accuracy of the models' kinematic predictions was assessed using experimentally measured IMU signals and gait kinematics. Models trained using the synthetic data out-performed models using only the experimental data in five of the six rotational degrees of freedom at the hip and knee. On average, root mean square errors in joint angle predictions were improved by 38% at the hip (synthetic data RMSE: 2.3°, measured data RMSE: 4.5°) and 11% at the knee (synthetic data RMSE: 2.9°, measured data RMSE: 3.3°), when models trained solely on synthetic data were compared to measured data. When models were trained on both measured and synthetic data, root mean square errors were reduced by 54% at the hip (measured + synthetic data RMSE: 1.9°) and 45% at the knee (measured + synthetic data RMSE: 1.7°), compared to measured data alone. These findings enable future model development for different activities of clinical significance without the burden of generating large quantities of gait lab data for model training, streamlining model development, and ultimately improving model performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434290 | PMC |
http://dx.doi.org/10.3390/s21175876 | DOI Listing |
Surv Methodol
December 2024
Department of Statistical Science, 214a Old Chemistry Building, Duke University, Durham, NC 27708-0251.
When seeking to release public use files for confidential data, statistical agencies can generate fully synthetic data. We propose an approach for making fully synthetic data from surveys collected with complex sampling designs. Our approach adheres to the general strategy proposed by Rubin (1993).
View Article and Find Full Text PDFProc IEEE Int Symp Biomed Imaging
May 2024
Department of Electrical and Computer Engineering, Nashville, TN, USA.
Multiplex immunofluorescence (MxIF) imaging is a critical tool in biomedical research, offering detailed insights into cell composition and spatial context. As an example, DAPI staining identifies cell nuclei, while CD20 staining helps segment cell membranes in MxIF. However, a persistent challenge in MxIF is saturation artifacts, which hinder single-cell level analysis in areas with over-saturated pixels.
View Article and Find Full Text PDFThe competition for resources is a defining feature of microbial communities. In many contexts, from soils to host-associated communities, highly diverse microbes are organized into metabolic groups or guilds with similar resource preferences. The resource preferences of individual taxa that give rise to these guilds are critical for understanding fluxes of resources through the community and the structure of diversity in the system.
View Article and Find Full Text PDFPurpose: To develop an algorithm using routine clinical laboratory measurements to identify people at risk for systematic underestimation of glycated hemoglobin (HbA1c) due to p.Val68Met glucose-6-phosphate dehydrogenase (G6PD) deficiency.
Methods: We analyzed 122,307 participants of self-identified Black race across four large cohorts with blood glucose, HbA1c, and red cell distribution width measurements from a single blood draw.
F1000Res
January 2025
Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Baden-Württemberg, Germany.
Background: Synthetic data's utility in benchmark studies depends on its ability to closely mimic real-world conditions and reproduce results obtained from experimental data. Building on Nearing et al.'s study (1), who assessed 14 differential abundance tests using 38 experimental 16S rRNA datasets in a case-control design, we are generating synthetic datasets that mimic the experimental data to verify their findings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!