Public safety agencies have been working on the modernization of their communication networks and the enhancement of their mission-critical capabilities with novel technologies and applications. As part of these efforts, migrating from traditional land mobile radio (LMR) systems toward cellular-enabled, next-generation, mission-critical networks is at the top of these agencies' agendas. In this paper, we provide an overview of cellular technologies ratified by the 3rd Generation Partnership Project (3GPP) to enable next-generation public safety networks. On top of using wireless communication technologies, emergency first responders need to be equipped with advanced devices to develop situational awareness. Therefore, we introduce the concept of the Internet of Life-Saving Things (IoLST) and focus on the role of wearable devices-more precisely, cellular-enabled wearables, in creating new solutions for enhanced public safety operations. Finally, we conduct a performance evaluation of wearable-based, mission-critical applications. So far, most of the mission-critical service evaluations target latency performance without taking into account reliability requirements. In our evaluation, we examine the impact of device- and application-related parameters on the latency and the reliability performance. We also identify major future considerations for better support of the studied requirements in next-generation public safety networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433968 | PMC |
http://dx.doi.org/10.3390/s21175790 | DOI Listing |
Trials
January 2025
MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, UCL, 90 High Holborn, London, WC1V 6LJ, UK.
Need For A Strategic Approach To Knowledge Transfer And Exchange: Late-phase clinical trials and systematic reviews find results that have the potential to improve health outcomes for people. However, there are often delays in these results influencing clinical practice. We developed a knowledge transfer and exchange strategy to support research teams, aiming to identify activities along the research process to maximise and accelerate the research impact.
View Article and Find Full Text PDFDiabetol Metab Syndr
January 2025
First Central Clinical Medical Institute, Tianjin Medical University, Tianjin, China.
Background: To identify the relationship between BMI or lipid metabolism and diabetic neuropathy using a Mendelian randomization (MR) study.
Methods: Body constitution-related phenotypes, namely BMI (kg/m), total cholesterol (TC), and triglyceride (TG), were investigated in this study. Despite the disparate origins of these data, all were accessible through the IEU OPEN GWAS database ( https://gwas.
Trials
January 2025
Department of Neurology, Universitätsmedizin Greifswald, Fleischmannstraße 6, Greifswald, 17489, Germany.
Background: Postoperative delirium (POD) is the most common neurological adverse event among elderly patients undergoing surgery. POD is associated with an increased risk for postoperative complications, long-term cognitive decline, an increase in morbidity and mortality as well as extended hospital stays. Delirium prevention and treatment options are currently limited.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Hematology Oncology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou, China.
Background: Anti-CD19 chimeric antigen receptor (CAR) T cell therapy is a common, yet highly efficient, cellular immunotherapy for lymphoma. However, many recent studies have reported on its cardiovascular (CV) toxicity. This study analyzes the cardiotoxicity of CD19 CAR T cell therapy in the treatment of lymphoma for providing a more valuable reference for clinicians.
View Article and Find Full Text PDFExp Hematol Oncol
January 2025
Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China.
Background: Sequential CD19 and CD22 chimeric antigen receptor (CAR)-T cell therapy offers a promising approach to antigen-loss relapse in relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL); however, research in adults remains limited.
Methods: This study aimed to evaluate the efficacy and safety of sequential CD19 and CD22 CAR-T cell therapy in adult patients with R/R B-ALL between November 2020 and November 2023 (ChiCTR2100053871). Key endpoints included the adverse event incidence, overall survival (OS), and leukemia-free survival (LFS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!