Hypoxic and Hyperoxic Breathing as a Complement to Low-Intensity Physical Exercise Programs: A Proof-of-Principle Study.

Int J Mol Sci

Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium.

Published: September 2021

Inflammation is an adaptive response to both external and internal stimuli including infection, trauma, surgery, ischemia-reperfusion, or malignancy. A number of studies indicate that physical activity is an effective means of reducing acute systemic and low-level inflammation occurring in different pathological conditions and in the recovery phase after disease. As a proof-of-principle, we hypothesized that low-intensity workout performed under modified oxygen supply would elicit a "metabolic exercise" inducing a hormetic response, increasing the metabolic load and oxidative stress with the same overall effect expected after a higher intensity or charge exercise. Herein, we report the effect of a 5-week low-intensity, non-training, exercise program in a group of young healthy subjects in combination with the exposure to hyperoxia (30% and 100% pO, respectively) or light hypoxia (15% pO) during workout sessions on several inflammation and oxidative stress parameters, namely hemoglobin (Hb), redox state, nitric oxide metabolite (NOx), inducible nitric oxide synthase (iNOS), inflammatory cytokine expression (TNF-α, interleukin (IL)-6, IL-10), and renal functional biomarkers (creatinine, neopterin, and urates). We confirmed our previous reports demonstrating that intermittent hyperoxia induces the normobaric oxygen paradox (NOP), a response overlapping the exposure to hypoxia. Our data also suggest that the administration of modified air composition is an expedient complement to a light physical exercise program to achieve a significant modulation of inflammatory and immune parameters, including cytokines expression, iNOS activity, and oxidative stress parameters. This strategy can be of pivotal interest in all those conditions characterized by the inability to achieve a sufficient workload intensity, such as severe cardiovascular alterations and articular injuries failing to effectively gain a significant improvement of physical capacity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431767PMC
http://dx.doi.org/10.3390/ijms22179600DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
physical exercise
8
exercise program
8
stress parameters
8
nitric oxide
8
hypoxic hyperoxic
4
hyperoxic breathing
4
breathing complement
4
complement low-intensity
4
physical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!