A series of 14 target benzyl [2-(arylsulfamoyl)-1-substituted-ethyl]carbamates was prepared by multi-step synthesis and characterized. All the final compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro, and the selectivity index (SI) was determined. Except for three compounds, all compounds showed strong preferential inhibition of BChE, and nine compounds were even more active than the clinically used rivastigmine. Benzyl {(2)-1-[(2-methoxybenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (), benzyl {(2)-1-[(4-chlorobenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (), and benzyl [(2)-1-(benzylsulfamoyl)-4-methylpentan-2-yl]carbamate () showed the highest BChE inhibition (IC = 4.33, 6.57, and 8.52 µM, respectively), indicating that derivatives and had approximately 5-fold higher inhibitory activity against BChE than rivastigmine, and was even 9-fold more effective than rivastigmine. In addition, the selectivity index of and was approx. 10 and that of was even 34. The process of carbamylation and reactivation of BChE was studied for the most active derivatives , . The detailed information about the mode of binding of these compounds to the active site of both BChE and AChE was obtained in a molecular modeling study. In this study, combined techniques (docking, molecular dynamic simulations, and QTAIM (quantum theory of atoms in molecules) calculations) were employed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8430704 | PMC |
http://dx.doi.org/10.3390/ijms22179447 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!