Thymoquinone has anti-cancer properties. However, its application for clinical use is limited due to its volatile characteristics. The current study aims to develop a polymeric nanoformulation with PLGA-PEG and Pluronics F68 as encapsulants to conserve thymoquinone's (TQ) biological activity before reaching the target sites. Synthesis of nanoparticles was successfully completed by encapsulating TQ with polymeric poly (D, L-lactide-co-glycolide)-block-poly (ethylene glycol) and Pluronics F68 (TQ-PLGA-PF68) using an emulsion-solvent evaporation technique. The size and encapsulation efficiency of TQ-PLGA-PF68 nanoparticles were 76.92 ± 27.38 nm and 94%, respectively. TQ released from these encapsulants showed a biphasic released pattern. Cytotoxicity activity showed that tamoxifen-resistant (TamR) MCF-7 breast cancer cells required a higher concentration of TQ-PLGA-PF68 nanoparticles than the parental MCF-7 cells to achieve IC ( < 0.05). The other two resistant subtypes (TamR UACC732 inflammatory breast carcinoma and paclitaxel-resistant (PacR) MDA-MB 231 triple-negative breast cell line) required a lower concentration of TQ-PLGA-PF68 nanoparticles compared to their respective parental cell lines ( < 0.05). These findings suggest that TQ encapsulation with PLGA-PEG and Pluronics F68 is a promising anti-cancer agent in mitigating breast cancer resistance to chemotherapeutics. In future studies, the anti-cancer activity of TQ-PLGA-PF68 with the standard chemotherapeutic drugs used for breast cancer treatment is recommended.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431343 | PMC |
http://dx.doi.org/10.3390/ijms22179420 | DOI Listing |
Membranes (Basel)
December 2024
Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1 "James Bourchier" Blvd., 1164 Sofia, Bulgaria.
Poly(butyl cyanoacrylate) (PBCA) nanoparticles have numerous applications, including drug and gene delivery, molecular imaging, and cancer therapy. To uncover the molecular mechanisms underlying their interactions with cell membranes, we utilized a Langmuir monolayer as a model membrane system. This approach enabled us to investigate the processes of penetration and reorganization of PBCA nanoparticles when deposited in a phospholipid monolayer subphase.
View Article and Find Full Text PDFGels
December 2024
Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia.
Currently, materials with specific, strictly defined functional properties are becoming increasingly important. A promising strategy for achieving these properties involves developing methods that facilitate the formation of hierarchical porous materials that combine micro-, meso-, and macropores in their structure. Macropores facilitate effective mass transfer of substances to the meso- and micropores, where further adsorption or reaction processes can occur.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India. Electronic address:
There is a growing pharmaceutical interest in supersaturated lipid-based formulations (Super-LbF) as an innovative strategy to enhance drug loading capacities while simultaneously reducing pill burden. This approach involves increasing the drug concentration above its equilibrium solubility in a lipid solution, achieved through temperature-induced supersaturation or the dissolution of lipophilic ionic salts. However, the physical instability and potential drug precipitation upon the dispersion of LbF remain critical.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Neurology, Liaocheng People's Hospital, Liaocheng 252000, Shandong, China; Department of Neurology, Liaocheng People's Hospital, Shandong University, Jinan 250012, Shandong, China; Department of Neurology, the Second People's Hospital, Liaocheng, Liaocheng 252000, Shandong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Shandong Sub-centre, Liaocheng 252000, Shandong, China. Electronic address:
Background: Ischemic stroke has become one of the leading causes of death and disability worldwide in individuals aged 60 and above. However, currently available drugs show limited efficacy. Therefore, research to find more effective and safer therapeutic strategies is an urgent requirement for the treatment of cerebral ischemia reperfusion injury (CIRI).
View Article and Find Full Text PDFPharmaceutics
September 2024
Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!