In the mammalian brain, cortical interneurons (INs) are a highly diverse group of cells. A key neurophysiological question concerns how each class of INs contributes to cortical circuit function and whether specific roles can be attributed to a selective cell type. To address this question, researchers are integrating knowledge derived from transcriptomic, histological, electrophysiological, developmental, and functional experiments to extensively characterise the different classes of INs. Our hope is that such knowledge permits the selective targeting of cell types for therapeutic endeavours. This review will focus on two of the main types of INs, namely the parvalbumin (PV) or somatostatin (SOM)-containing cells, and summarise the research to date on these classes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8430628 | PMC |
http://dx.doi.org/10.3390/ijms22179297 | DOI Listing |
Preterm birth is a leading risk factor for atypicalities in cognitive and sensory processing, but it is unclear how prematurity impacts circuits that support these functions. To address this, we trained adult mice born a day early (preterm mice) on a visual discrimination task and found that they commit more errors and fail to achieve high levels of performance. Using , we found that the neurons in the primary visual cortex (V1) and the V1-projecting prefrontal anterior cingulate cortex (ACC) are hyper-responsive to the reward, reminiscent of cue processing in adolescence.
View Article and Find Full Text PDFJ Comput Neurosci
December 2024
Department of Applied Mathematics, and Centre for Theoretical Neuroscience, University of Waterloo, 200 University Avenue W, Waterloo, N2L 3G1, ON, Canada.
Childhood absence epilepsy (CAE) is a paediatric generalized epilepsy disorder with a confounding feature of resolving in adolescence in a majority of cases. In this study, we modelled how the small-scale (synapse-level) effect of progesterone metabolite allopregnanolone induces a large-scale (network-level) effect on a thalamocortical circuit associated with this disorder. In particular, our goal was to understand the role of sex steroid hormones in the spontaneous remission of CAE.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240.
Combinatorial networks of cell adhesion molecules and cell surface receptors drive fundamental aspects of neural circuit establishment and function. However, the intracellular signals orchestrated by these cell surface complexes remain less understood. Here, we report that the Gα12/13 pathway lies downstream of several GPCRs with critical synaptic functions.
View Article and Find Full Text PDFLearn Mem
December 2024
Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08542, USA
In humans, psychological loss, whether social or nonsocial, can lead to clinical depression, anxiety disorders, and social memory impairments. Researchers have modeled combined social and nonsocial loss in rodents by transitioning them from social, enriched environments (EE) to individual housing, affecting behaviors related to avoidance, stress coping, and cognitive function. However, it remains unclear if these effects are driven by social or nonsocial loss.
View Article and Find Full Text PDFReliable and systematic experimental access to diverse cell types is necessary for understanding the neural circuit organization, function, and pathophysiology of the human brain. Methods for targeting human neural populations are scarce and currently center around identifying and engineering transcriptional enhancers and viral capsids. Here we demonstrate the utility of CellREADR, a programmable RNA sensor-effector technology that couples cellular RNA sensing to effector protein translation, for accessing, monitoring, and manipulating specific neuron types in human cortical tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!