Antimicrobial resistance has spread globally, compromising the treatment of common infections. This feature is particularly harmful for nosocomial pathogens that can survive on hospital surfaces. Research studies have been conducted to evaluate new materials that are able to counteract the microbial growth and the colonization of the hospital environment. In this context, nanotechnologies have showed encouraging applications. We investigated the antibacterial activity of multi-walled carbon nanotubes (MWCNTs), both pristine (p) and functionalized (f), at concentrations of 50 and 100 μg mL, against bacterial strains isolated from hospital-acquired infections, and this activity was correlated with the antibiotic susceptibility of the strains. The inhibiting effect of MWCNTs occurred for both types and doses tested. Moreover, f-MWCNTs exerted a greater inhibiting effect, with growth decreases greater than 10% at 24 h and 20% at 48 h compared to p-MWCNTs. Moreover, a lower inhibitory effect of MWCNTs, which was more lasting in Gram-positives resistant to cell wall antibiotics, or temporary in Gram-negatives resistant to nucleic acid and protein synthesis inhibitors, was observed, highlighting the strong relation between antibiotic resistance and MWCNT effect. In conclusion, an antimicrobial activity was observed especially for f-MWCNTs that could therefore be loaded with bioactive antimicrobial molecules. However, this potential application of CNTs presupposes the absence of toxicity and therefore total safety for patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431017 | PMC |
http://dx.doi.org/10.3390/ijerph18179310 | DOI Listing |
Nat Prod Res
January 2025
Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, P. R. China.
A new hydrindane derivative, asperhydrindane A (), along with two known sterol analogues [isocyathisterol () and ganodermasides D ()] were isolated from the mangrove-derived fungus GXIMD 03158 attaching to the mangrove L. The structure of was elucidated based on extensive spectral analysis, HRESIMS, and calculated ECD methods. All compounds were evaluated for antibacterial activity.
View Article and Find Full Text PDFViruses
January 2025
Laboratory of Molecular Biology, G. Eliava Institute of Bacteriophages, Microbiology and Virology, 0160 Tbilisi, Georgia.
The rapid worldwide spread of antibiotic resistance is quickly becoming an increasingly concerning problem for human healthcare. Non-antibiotic antibacterial agents are in high demand for many Gram-negative bacterial pathogens, including . -targeting phages are among the most promising alternative therapy options.
View Article and Find Full Text PDFViruses
January 2025
Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by . phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with infection.
View Article and Find Full Text PDFViruses
January 2025
State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia.
is a widely distributed nosocomial pathogen that causes various acute and chronic infections, particularly in immunocompromised patients. In this study, the activities of the K9-specific virulent phage AM24 and phage-encoded depolymerase DepAPK09 were assessed using in vivo mouse sepsis and burn skin infection models. In the mouse sepsis model, in the case of prevention or early treatment, a single K9-specific phage or recombinant depolymerase injection was able to protect 100% of the mice after parenteral infection with a lethal dose of of the K9-type, with complete eradication of the pathogen.
View Article and Find Full Text PDFPharmaceutics
January 2025
Faculty of Pharmacy, "Grigore. T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania.
Magnolol (MG) and honokiol (HK) are bioactive compounds extracted from and trees with significant pharmacological properties, including antioxidant and antibacterial activity. However, their poor water solubility and low bioavailability limit the therapeutic potential. To address these limitations, this study aims to develop MG and HK formulations by co-electrospinning using custom-synthesized β-cyclodextrin-oligolactide (β-CDLA) derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!