Combined with the technologies of underwater local dry laser cladding (ULDLC) and underwater local dry laser remelting (ULDLR), a duplex stainless steel (DSS) coating has been made in an underwater environment. The phase composition, microstructure, chemical components and electrochemical corrosion resistance was studied. The results show that after underwater laser remelting, the phase composition of DSS coating remains unchanged and the phase transformation from Widmanstätten austenite + intragranular austenite + (211) ferrite to (110) ferrite occurred. The ULDLR process can improve the corrosion resistance of the underwater local dry laser cladded coating. The corrosion resistance of remelted coating at 3 kW is the best, the corrosion resistance of remelted coating at 1kW and 5kW is similar and the corrosion resistance of (110) ferrite phase is better than grain boundary austenite phase. The ULDLC + ULDLR process can meet the requirements of efficient underwater maintenance, forming quality control and corrosion resistance. It can also be used to repair the surface of S32101 duplex stainless steel in underwater environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434108 | PMC |
http://dx.doi.org/10.3390/ma14174965 | DOI Listing |
PLoS One
January 2025
School of Mechanical Engineering, Liaoning Technical University, Fuxin, China.
Titanium alloy is known for its low thermal conductivity, small elastic modulus, and propensity for work hardening, posing challenges in predicting surface quality post high-speed milling. Since surface quality significantly influences wear resistance, fatigue strength, and corrosion resistance of parts, optimizing milling parameters becomes crucial for enhancing service performance. This paper proposes a milling parameter optimization method utilizing the snake algorithm with multi-strategy fusion to improve surface quality.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., P.O. Box 15875-4413, Tehran, Iran.
This study investigates the impact of MgO nanoparticles (0, 0.1, 0.5, and 1 wt%) on the corrosion behavior of hot-dipped galvalume (Zn-55Al-1.
View Article and Find Full Text PDFSci Rep
January 2025
I-Form Advanced Manufacturing Research Centre, Dublin City University, Dublin, Ireland.
In the realm of materials science and engineering, the pursuit of advanced materials with tailored properties has been a driving goal behind technological progress. Scientific interest in laser powder bed fusion (L-PBF) fabricated NiTi alloy has in recent times seen an upsurge of activity. In this study, we investigate the impact of varying volume energy density (VED) during L-PBF on the microstructure and corrosion behaviour of NiTi alloys in both scan (XY) and built (XZ) planes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
Developing versatile, scalable, and durable coatings that repel various matters in different service environments is of great importance for engineered materials applications but remains highly challenging. Here, the mesoporous silica microspheres (HMS) fabricated by the hard template method were utilized as micro-nanocontainers to encapsulate the hydrophobic agent of perfluorooctyltriethoxysilane (F13) and the corrosion inhibitor of benzotriazole (BTA), forming the functional microsphere of F-HMS(BTA). Moreover, the synthesized organosilane-modified silica sol adhesive (SMP) and F-HMS(BTA) were further employed as the binder and functional filler to construct a superhydrophobic self-healing coating of SMP@F-HMS(BTA) on various engineering metals through scalable spraying.
View Article and Find Full Text PDFSmall
January 2025
Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, P. R. China.
Electricity-powered C─C coupling of CO represents an attractive strategy for producing valuable commodity chemicals with renewable energy, but it is still challenging to gain high C selectivity at high current density. Here, a SnCu single-atom alloy (SAA) is reported with isolated Sn atom embedded into the Cu lattice, as efficient ectrocatalyst for CO reduction. The as prepared SnCu-SAA catalyst shows a maximal C Faradaic efficiency of 79.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!