Graphene oxide (GO) is one of the most explored nanomaterials in recent years. It has numerous biomedical applications as a nanomaterial including drug and gene delivery, contrast imaging, cancer treatment, etc. Since most of these applications need intravenous administration of graphene oxide and derivatives, the evaluation of their haemocompatibility is an essential preliminary step for any of the developed GO applications. Plentiful data show that functionalization of graphene oxide nanoparticles with polyethylene glycol (PEG) increases biocompatibility, thus allowing PEGylated GO to elicit less dramatic blood cell responses than their pristine counterparts. Therefore, in this work, we PEGylated graphene oxide nanoparticles and evaluated the effects of their PEGylation on the structure and function of human blood components, especially on the morphology and the haemolytic potential of red blood cells (RBCs). Further, we studied the effect of PEGylation on some blood coagulation factors, including plasma fibrinogen as well as on the activated partial thromboplastin (aPTT), prothrombin time (PT) and platelet aggregation. Our findings provide important information on the mechanisms through which PEGylation increases GO compatibility with human blood cells. These data are crucial for the molecular design and biomedical applications of PEGylated graphene oxide nanomaterials in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432731PMC
http://dx.doi.org/10.3390/ma14174853DOI Listing

Publication Analysis

Top Keywords

graphene oxide
24
human blood
12
polyethylene glycol
8
functionalization graphene
8
biomedical applications
8
oxide nanoparticles
8
pegylated graphene
8
blood cells
8
graphene
6
oxide
6

Similar Publications

Volatile Sieving Using Architecturally Designed Nanochannel Lamellar Membranes in Membrane Desalination.

ACS Nano

January 2025

Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.

Thermally driven membrane desalination processes have garnered significant interest for their potential in the treatment of hypersaline wastewater. However, achieving high rejection rates for volatiles while maintaining a high water flux remains a considerable challenge. Herein, we propose a thermo-osmosis-evaporation (TOE) system that utilizes molecular intercalation-regulated graphene oxide (GO) as the thermo-osmotic selective permeation layer, positioned on a hydrophobic poly(vinylidene fluoride) fibrous membrane serving as the thermo-evaporation layer.

View Article and Find Full Text PDF

Differential insulin response characteristics of graphene oxide-gold nanoparticle composites under varied synthesis conditions.

PLoS One

January 2025

Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.

The structural alterations in the constituent materials of nanocomposites such as graphene nanocomposites typically induce changes in their properties including mechanical, electrical, and optical properties. Therefore, by altering the preparation conditions of nanocomposites and investigating their responsiveness to basic biomolecules (such as proteins), it is possible to explore the application potentials of the composites and guide development of new nanocomposite preparation. In this study, different composites of graphene oxide and gold nanoparticles (AuNPs/GO) were obtained by varying the volumes of reducing agents used in the one-pot hydrothermal method.

View Article and Find Full Text PDF

Enhancing CO Oversaturation in the Confined Water Enables Superior Gas Selectivity of 2D Membranes.

J Phys Chem Lett

January 2025

Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.

Due to the global demands on carbon neutralization, CO separation membranes, particularly those based on two-dimensional (2D) materials, have attracted increasing attention. However, recent works have focused on the chemical decoration of membranes to realize the selective transport, leading to the compromised stability in the presence of moisture. Herein, we develop a series of 2D capillaries based on layered double hydroxide (LDH), graphene oxide, and vermiculite to enhance the oversaturation of CO in the confined water for promoting the membrane permselectivity.

View Article and Find Full Text PDF

Neurodegenerative diseases, characterized by the progressive deterioration of neuronal function and structure, pose significant global public health and economic challenges. Brain-Derived Neurotrophic Factor (BDNF), a key regulator of neuroplasticity and neuronal survival, has emerged as a critical biomarker for various neurodegenerative and psychiatric disorders, including Alzheimer's disease. Traditional diagnostic methods, such as Enzyme-Linked Immunosorbent Assay (ELISA) and electrochemiluminescence (ECL) assays, face limitations in terms of sensitivity, stability, reproducibility, and cost-effectiveness.

View Article and Find Full Text PDF

Graphene oxide-based fluorescent biosensors for pathogenic bacteria detection: A review.

Anal Chim Acta

February 2025

Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China. Electronic address:

Background: Pathogenic bacteria are widespread in nature and can cause infections and various complications, thereby posing a severe risk to public health. Therefore, simple, rapid, sensitive, and cost-effective methods must be developed to detect pathogenic bacteria. Biosensors are prominent platforms for detecting pathogenic bacteria owing to their high sensitivity, specificity, repeatability, and stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!