Numerous studies have been carried out on the axially loaded circular concrete-filled steel tube (CCFST) stub columns. However, to date, no clear evaluation criterion for the compatibility of its design parameters has been established. In the present study, the compatibility of the design parameters (concrete compressive strength fc, steel yield strength fy, diameter and thickness of steel tube ) of axially loaded CCFST stub columns was quantitatively investigated in terms of the contribution of the composite actions to the axial bearing capacity of the columns. The composite ratio λ was proposed as an indicator to represent the effectiveness of the composite actions. A numerical framework of the determination of λ was established, making use of a series of existing widely recognized constitutive models of structural steel and concrete. Some modifications were carried out on these models to ensure the numerical stability of the presented analysis. Moreover, the rationality of the combined use of these models was verified. The analytical results show that excessive or very small D/t ratio should be avoided in design. Meanwhile, the combined use of low-strength steel and high-strength concrete should be avoided. A table of optimal D/t ratios corresponding to different material strength matches was provided for designers. Finally, an optimization of the design parameters using the proposed method and the existing design specification was performed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432730 | PMC |
http://dx.doi.org/10.3390/ma14174839 | DOI Listing |
Sci Rep
January 2025
Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Ouest, Montreal, QC H3C 1K3, Canada.
Bolted joints, prevalent in industrial applications for component fastening, are susceptible to self-loosening-a critical issue resulting in a gradual reduction in clamping force. Gaining insight into the underlying mechanisms of self-loosening is crucial. While prior research has largely focused on evaluating component stiffness, limited attention has been given to its impact on the self-loosening behavior of bolted joints under transverse cyclic loading.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100101, China.
To assess the biomechanical behaviors of endodontically treated molars (ETMs) restored with endocrowns composed of different materials, forty mandibular molars were assigned to five groups (n = 8 each). Untreated molars constituted the control group (group C); the rest of the teeth that underwent root canal therapy were restored with endocrowns composed of polycrystalline ceramics (ST zirconia, UPCERA) in group ZR, lithium disilicate glass ceramics (UP.CAD, UPCERA) in group LD, resin-based nanoceramics (Hyramic, UPCERA) in group NC, and feldspathic ceramics (CEREC Blocs, Sirona) in group FC.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Orthopedics and Traumatology, Karabük University, Karabük 78050, Turkey.
The study aimed to evaluate a newly designed semicircular implant for the fixation of Vancouver Type B1 periprosthetic femoral fractures (PFFs) in total hip arthroplasty (THA) patients. To determine its strength and clinical applicability, the new implant was compared biomechanically with conventional fixation methods, such as lateral locking plate fixation and a plate combined with cerclage wires. : Fifteen synthetic femur models were used in this biomechanical study.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
Braided composites are gaining attention in the most industrial applications. To design rods with optimal tensile properties against combined loads, experimental studies were conducted to investigate the effect of using axial yarn and core in different categories on the tensile properties of braided reinforced composite rods. In this study, six types of braided composite rods with different arrangements of braid components (axial yarn or core type) were produced using glass and polyester fibers with epoxy resin as the matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!