The textile sector produces yearly great quantities of cotton byproducts, and the major part is either incinerated or landfilled, resulting in serious environmental risks. The use of such byproducts in the composite sector presents an attractive opportunity to valorize the residue, reduce its environmental impact, and decrease the pressure on natural and synthetic resources. In this work, composite materials based on polypropylene and dyed cotton byproducts from the textile industry were manufactured. The competitiveness of the resulting composites was evaluated from the analyses, at macro and micro scales, of the flexural modulus. It was observed that the presence of dyes in cotton fibers, also a byproduct from the production of denim items, notably favored the dispersion of the phases in comparison with other cellulose-rich fibers. Further, the presence of a coupling agent, in this case, maleic anhydride grafted polypropylene, enhanced the interfacial adhesion of the composite. As a result, the flexural modulus of the composite at 50 wt.% of cotton fibers enhanced by 272% the modulus of the matrix. From the micromechanics analysis, using the Hirsch model, the intrinsic flexural modulus of cotton fibers was set at 20.9 GPa. Other relevant micromechanics factors were studied to evaluate the contribution and efficiency of the fibers to the flexural modulus of the composite. Overall, the work sheds light on the potential of cotton industry byproducts to contribute to a circular economy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432489PMC
http://dx.doi.org/10.3390/ma14174787DOI Listing

Publication Analysis

Top Keywords

flexural modulus
20
cotton fibers
12
potential cotton
8
cotton industry
8
industry byproducts
8
composite sector
8
cotton byproducts
8
modulus composite
8
cotton
7
composite
6

Similar Publications

Objectives: This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested.

Methods: Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50).

View Article and Find Full Text PDF

This study investigated a composite material combining epoxy with hybrid jute (J) and glass (G) fibers. A straightforward and effective fabrication method was employed, utilizing five layers with various reinforcement materials. To identify the optimal combination, a comprehensive series of tests were conducted using a range of characterization instruments, including Scanning Electron Microscopy (SEM), Universal Testing Machine (UTM), pendulum impact tester, density measurement, specific gravity evaluation, water absorption, and swelling thickness tests.

View Article and Find Full Text PDF

Edge Chipping Resistance and Flexural Strength of CAD-CAM Ceramics Before and After Thermomechanical Aging.

J Esthet Restor Dent

December 2024

Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.

Objectives: To evaluate the complementary mechanical properties of dental ceramics using edge chipping resistance (Rea) and flexural strength before and after thermomechanical aging.

Material And Methods: Computer-aided design and computer-aided manufacturing of ceramic materials, including zirconia (ZR), lithium disilicate (LS2), and resin nanoceramics (RNC), were evaluated. Specimens for flexural strength testing were fabricated with dimensions of 3 × 4 × 25 mm, with 30 specimens per group.

View Article and Find Full Text PDF

Trends in pH-triggered strategies for dental resins aiming to assist in preventing demineralization: A scoping review.

J Dent

December 2024

Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro (UFRJ), Rodolpho Paulo Rocco, 325, Rio de Janeiro, RJ 21941-617, Brazil. Electronic address:

Objectives: To identify and map the literature on the current state of pH-triggered strategies for resin-based materials used in direct restorative dentistry, focusing on innovative compounds, their incorporation and evaluation methods, and the main outcomes.

Data And Sources: Through a search across PubMed, Scopus, Embase, Web of Science, LILACS, Cochrane Library databases, and Google Scholar, this review identified studies pertinent to pH-responsive dental materials, excluding resin-modified glass ionomer cements.

Study Selection: From the 981 records identified, 19 in vitro studies were included, concentrating on resin-based composite resins (50 %), dentin adhesives (25 %), and sealants (25 %).

View Article and Find Full Text PDF

Background: Cementoplasty has been successfully used for treating fractures in various parts of the human body, although the use in weight-bearing long bones is a subject of controversial debate. Strategies to improve the mechanical properties of polymethylmethacrylate-based bone cement (BC) comprise changing the chemical composition or the application of metal reinforcement strategies. In clinical practice reinforced bone cement is used despite biomechanical basic research regarding this topic being scare.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!