Engineered Cementitious Composites (ECC) exhibit high ductility accompanied by multiple narrow cracking behavior under uniaxial tension. The study experimentally investigated the influence of sodium lignosulfonate and high volumes of fly ash (HVFA) on the properties of fresh and hardened ECC, with the experimental variables including the amounts of fly ash, polyvinyl alcohol (PVA) fibers, and sodium lignosulfonate. The test results were discussed extensively in terms of the initial and final setting times, compressive and tensile behavior, and drying and autogenous shrinkage. The results indicated that the initial and final setting times of ECC were increased along with the sodium lignosulfonate content of up to 1% The drying shrinkage development was governed by the first 14 days. In addition, the major autogenous shrinkage developed for more than 28 days. The amounts of fly ash, PVA fibers, and sodium lignosulfonate considerably impacted the autogenous shrinkage. Moreover, it was found that the dosage of sodium lignosulfonate at 0.5% of the weight of Portland cement optimally reduced the shrinkage and enhanced the tensile strain capacity for ECC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432459PMC
http://dx.doi.org/10.3390/ma14174779DOI Listing

Publication Analysis

Top Keywords

sodium lignosulfonate
24
fly ash
16
autogenous shrinkage
12
engineered cementitious
8
cementitious composites
8
amounts fly
8
pva fibers
8
fibers sodium
8
initial final
8
final setting
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!