Lignocellulose is a kind of renewable bioresource containing abundant polysaccharides, which can be used for biochemicals and biofuels production. However, the complex structure hinders the final efficiency of lignocellulosic biorefinery. This review comprehensively summarizes the hydrolases and typical microorganisms for lignocellulosic degradation. Moreover, the commonly used bioprocesses for lignocellulosic biorefinery are also discussed, including separated hydrolysis and fermentation, simultaneous saccharification and fermentation and consolidated bioprocessing. Among these methods, construction of microbial co-culturing systems via consolidated bioprocessing is regarded as a potential strategy to efficiently produce biochemicals and biofuels, providing theoretical direction for constructing efficient and stable biorefinery process system in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433869 | PMC |
http://dx.doi.org/10.3390/molecules26175411 | DOI Listing |
Synth Syst Biotechnol
June 2025
Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.
Lignocellulose bio-refinery via microbial cell factories for chemical production represents a renewable and sustainable route in response to resource starvation and environmental concerns. However, the challenges associated with the co-utilization of xylose and glucose often hinders the efficiency of lignocellulose bioconversion. Here, we engineered yeast to effectively produce free fatty acids from lignocellulose.
View Article and Find Full Text PDFACS Omega
January 2025
Green Chemical Reaction Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Pyrolysis liquids from lignocellulosic biomass have the potential to be used as a feed for aromatics such as benzene, toluene, and xylenes (BTX) using catalytic upgrading with zeolites. We here report an experimental study on the conversion of various pyrolysis oil fractions to determine the most suitable one for BTX synthesis. For this purpose, the pyrolysis liquid was fractionated using several extraction/distillation steps to give four fractions with different chemical compositions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Beijing Key Laboratory of Lignocellulosic Chemistry, State Key Laboratory of Efficient Production of Forest Resources Beijing Forestry University, Beijing 100083, China. Electronic address:
To develop a green solvent for lignin dissolution, the most fundamental aspects of its mechanism must be elucidated. Understanding the thermodynamic behaviors is of significant importance for designing novel deep eutectic solvents (DESs) to dissolve lignin. Herein, the heat of dissolution of lignin in acidic, alkaline or neutral DESs was determined by high-precision solution microcalorimetry, and comprehensively investigated the effect of physicochemical properties of DESs on the heat of dissolution and solubility of lignin.
View Article and Find Full Text PDFACS Environ Au
January 2025
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-Ku, Kobe 657-8501, Japan.
Pretreatment of lignocellulosic biomass is crucial yet challenging for sustainable energy production. This study focuses on enhancing enzymatic accessibility of cellulose in oil palm empty fruit bunches by optimizing pretreatment parameters to improve glucose and ethanol yields while reducing fermentation inhibitors. It evaluates the impact of maleic acid concentrations on biorefinery processes.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
National Nanotechnology Laboratory, National Center for High Technology, Pavas, San José 10109, Costa Rica.
This study focuses on the extraction of phenolic compounds from the fermentation of and . The main goal was to synthesize phenol/chitosan microspheres and PVA films and characterized using FTIR, TGA, DSC, SEM, and mechanical tests to evaluate their physical, chemical, and mechanical properties for antimicrobial packaging applications. Homogeneous chitosan microspheres loaded with lignin-derived phenols were obtained, showing controlled release of antimicrobial compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!