Human neutrophil elastase (HNE) is a uniquely destructive serine protease with the ability to unleash a wave of proteolytic activity by destroying the inhibitors of other proteases. Although this phenomenon forms an important part of the innate immune response to invading pathogens, it is responsible for the collateral host tissue damage observed in chronic conditions such as chronic obstructive pulmonary disease (COPD), and in more acute disorders such as the lung injuries associated with COVID-19 infection. Previously, a combinatorially selected activity-based probe revealed an unexpected substrate preference for oxidised methionine, which suggests a link to oxidative pathogen clearance by neutrophils. Here we use oxidised model substrates and inhibitors to confirm this observation and to show that neutrophil elastase is specifically selective for the di-oxygenated methionine sulfone rather than the mono-oxygenated methionine sulfoxide. We also posit a critical role for ordered solvent in the mechanism of HNE discrimination between the two oxidised forms methionine residue. Preference for the sulfone form of oxidised methionine is especially significant. While both host and pathogens have the ability to reduce methionine sulfoxide back to methionine, a biological pathway to reduce methionine sulfone is not known. Taken together, these data suggest that the oxidative activity of neutrophils may create rapidly cleaved elastase "super substrates" that directly damage tissue, while initiating a cycle of neutrophil oxidation that increases elastase tissue damage and further neutrophil recruitment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434204PMC
http://dx.doi.org/10.3390/molecules26175344DOI Listing

Publication Analysis

Top Keywords

methionine sulfoxide
12
neutrophil elastase
12
human neutrophil
8
tissue damage
8
methionine
8
oxidised methionine
8
methionine sulfone
8
reduce methionine
8
neutrophil
5
elastase
5

Similar Publications

Metabolomic profiling of saliva from cystic fibrosis patients.

Sci Rep

January 2025

CEINGE-Biotecnologie avanzate Franco Salvatore, Via G. Salvatore 486, Naples, 80145, Italy.

The development of targeted therapies that correct the effect of mutations in patients with cystic fibrosis (CF) and the relevant heterogeneity of the clinical expression of the disease require biomarkers correlated to the severity of the disease useful for monitoring the therapeutic effects. We applied a targeted metabolomic approach by LC-MS/MS on saliva samples from 70 adult CF patients and 63 age/sex-matched controls to investigate alterations in metabolic pathways related to pancreatic insufficiency (PI), Pseudomonas aeruginosa (PA) colonization, CF liver disease (CFLD), and CF related diabetes (CFRD). Sixty salivary metabolites were differentially expressed, with 11 being less abundant and 49 more abundant in CF patients.

View Article and Find Full Text PDF

E. coli Nissle 1917 improves gut microbiota composition and serum metabolites to counteract atherosclerosis via the homocitrulline/Caspase 1/NLRP3/GSDMD axis.

Int J Med Microbiol

December 2024

Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China. Electronic address:

Article Synopsis
  • The probiotic E. coli Nissle 1917 (EcN) was studied for its effects on atherosclerosis in mice fed a high-fat diet, revealing its potential to alleviate disease progression.
  • EcN treatment reduced atherosclerotic plaque formation, improved cholesterol levels, and inhibited the expression of pyroptosis-related proteins linked to inflammation.
  • Further analysis showed that EcN regulated gut microbiota and metabolite levels, suggesting a mechanism for its beneficial effects, although antibiotics partially reversed these outcomes.
View Article and Find Full Text PDF

25.91%-Efficiency and Durable Inverted Perovskite Solar Cells Enabled by a Multifunctional Molecule Mediated Precursor Engineering.

Small

December 2024

School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.

The stability of the precursor is essential for producing high-quality perovskite films with minimal non-radiative recombination. In this study, methionine sulfoxide (MTSO), which features multiple electron-donation sites, is strategically chosen as a precursor stabilizer and crystal growth mediator for inverted perovskite solar cells (PSCs). MTSO stabilizes the precursor by inhibiting the oxidation of iodide ions and passivates charged traps through coordination and hydrogen bonding interactions.

View Article and Find Full Text PDF

Dissection of major QTLs and candidate genes for seedling stage salt/drought tolerance in tomato.

BMC Genomics

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Background: As two of the most impactful abiotic stresses, salt and drought strongly affect tomato growth and development, especially at the seedling stage. However, dissection of the genetic basis underlying salt/drought tolerance at seedling stage in tomato remains limited in scope.

Results: Here, we reported an analysis of major quantitative trait locus (QTL) and potential causal genetic variations in seedling stage salt/drought tolerance in recombinant inbred lines (n = 201) of S.

View Article and Find Full Text PDF

Polyphenols are well-known for their antioxidant properties, but their prooxidative activity remain less understood. This study quantitatively examined the formation of hydrogen peroxide (HO) during the autooxidation of nine different polyphenols in model systems, investigating how it impacts protein oxidation and protein-polyphenol covalent adduct formation. Polyphenols (4 mM) generated HO in the range of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!