Bismuth titanate (BiTiO) with unique sillenite structure has been shown to be an excellent photocatalyst for environmental remediation. However, the narrow light-responsive range and rapid recombination of photoinduced electrons-holes limit the photocatalytic performance of BiTiO. To overcome the limitations, a practical and feasibleway is to fabricate heterojunctions by combining BiTiO with suitable photocatalysts. Here, using a facile chemical precipitation method, a novel and hierarchical core-shell structure of n-BiTiO@p-BiOI (BTO@BiOI) heterojunction was rationally designed and synthesized by loading BiOI nanosheets on BTO nanofibers. The constructed BTO@BiOI composites exhibited significant charge transfer ability due to the synergistic effects of the built-in electric field between BTO and BiOI as well as close interfacial contacts. In addition, the narrow bandgapcharacteristics of the BiOI led to wide light absorption ranges. Therefore, the BTO@BiOI heterojunction exhibited an improved photocatalytic performance under visible light irradiation. The NO removal efficiency of optimal BTO@BiOI was 45.7%, which was significantly higher compared tothat of pure BTO (3.6%) or BiOI (23.1%). Moreover, the cycling experiment revealed that BTO@BiOI composite has a good stability and reusability. The possible mechanism of photocatalytic NO oxidation over BTO@BiOI was investigated in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.08.126 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!