Strong absorption and large bandwidth are two contributors to materials' absorbing performance. In this work, a series of multi-element core-shell magnetic nano-particle composite layered graphene absorbing materials CoFeO@C/rGO (CCr) were prepared by adjusting carbon shell thickness. The CCr at a low thickness achieved strong microwave absorption and a wide effective absorption bandwidth. Not only the core-shell structure of the magnetic nanoparticle CoFeO@C (CFO@C) increases the interface loss, but both the coating carbon shell and the core CoFeO (CFO) are beneficial to improve impedance matching. Due to the synergistic effect of the dielectric and magnetic properties of graphene and ferrite, CCr possessed high absorption performance, and its minimum reflection loss reached (R) -52.5 dB when the thickness was only 2 mm. At the same time, the effective absorption bandwidth (EAB) was 5.68 GHz when the thickness was only 1.7 mm. The chemically stable core-shell dielectric nanocomposite provided a new solution for preparing materials with excellent chemical structure and high absorbing properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.08.203 | DOI Listing |
PLoS One
January 2025
Faculty of Engineering (FOE), Multimedia University (MMU), Cyberjaya, Selangor, Malaysia.
Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
Presently, researchers are placing emphasis on microwave absorption coating design while neglecting the research on materials that integrate both microwave absorption performance and mechanical properties. Here, robust FeSiAl/PEEK composites were prepared by a series process, including post ball-milling annealing, sol-gel method, and hot pressing. A detailed analysis of the electromagnetic (EM) parameters reveals the significant effects of morphology, filling ratio, and microstructure of FeSiAl on EM losses under a wide-temperature range.
View Article and Find Full Text PDFSmall
January 2025
School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China.
In this study, CO reacted with a curing agent through nucleophilic addition to form ammonium salts, enabling the stable capture and internal release of CO, which achieved gas-phase nucleation and foaming. Additionally, the introduction of wave-absorbing agents improved the absorption mechanism and promoted uniform foaming. This nucleation-free foaming process relies on the induced growth of gas nuclei and the synergistic effect of the wave-absorbing agents, effectively preventing the uneven foaming issues caused by traditional nucleating agents.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, Boulevard D. Mangeron 71, 700050 Iasi, Romania.
This study investigated the creation of nano-composites using recycled LDPE and added 7.5 wt% nanofillers of Al and Fe in two varying particle sizes to be used as hot-melt adhesives for reversible bonding processes with the use of microwave technology. Reversible bonding relates to circular economy enhancement practices, like repair, refurbishment, replacement, or renovation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!