In this study, date syrup waste extract (DSWE) (15 wt%) and different content of silver doped sepiolite hybrid (Ag-Sep, 0.25-3 wt%) were incorporated into gelatin matrix to develop a series of active composite packaging films. Incorporating 2 wt% of Ag-Sep increased the modulus of blend film by 98% compared to unmodified gelatin/DSWE blend film. The active gelatin composite film exhibited superior active compounds migration to aqueous food simulants. Besides, Ag-Sep provided a tortuous pathway to the composite film, resulting in high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition efficiency (91%) and slow-release kinetics of active compounds to the food simulant. The Ag-Sep hybrid was improved the antimicrobial property of the gelatin/DSWE blend film against both gram-negative and gram-positive microbes. Thus, this study demonstrated that the Ag-Sep hybrid exhibits significant properties in the active gelatin composite films, implying that this hybrid could be an effective additive for various active packaging films.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.130983DOI Listing

Publication Analysis

Top Keywords

ag-sep hybrid
12
blend film
12
waste extract
8
extract dswe
8
composite films
8
packaging films
8
gelatin/dswe blend
8
active gelatin
8
gelatin composite
8
composite film
8

Similar Publications

In this study, date syrup waste extract (DSWE) (15 wt%) and different content of silver doped sepiolite hybrid (Ag-Sep, 0.25-3 wt%) were incorporated into gelatin matrix to develop a series of active composite packaging films. Incorporating 2 wt% of Ag-Sep increased the modulus of blend film by 98% compared to unmodified gelatin/DSWE blend film.

View Article and Find Full Text PDF

In this work, with the use of two natural compounds, chitin and sepiolite clay, a novel covalent hybrid is fabricated and applied as a support for the stabilization of silver nanoparticles with the aid of Kombucha extract as a natural reducing agent. The resultant catalytic system, Ag@Sep-N-CH, was characterized via XRD, TEM, FTIR, ICP, SEM, TGA, UV-Vis and BET. It was found that fine Ag(0) nanoparticles with mean diameter of 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!