Uncontrolled application of herbicides in the agricultural field poses a severe risk to crops by affecting their yields. Therefore, methods are required to reduce the toxic effects of herbicides in plants. Studies indicate that silicon (Si) provides tolerance and enhances defence mechanism of the plant against abiotic stress. But its role in alleviating Metsulfuron methyl (Meth) herbicide induced toxicity in wheat seedlings is still not known. This study highlighted the potential of exogenous addition of Si in the alleviation of toxic effect of Meth herbicide in wheat seedlings. The exposure of wheat seedlings to Meth herbicide reduced the growth, photosynthetic pigments, antioxidant enzyme activity and nitric oxide (NO) content. Further, Meth herbicide also increased cell death and decreased cell viability in root tips. However, addition of Si reversed Meth-induced these alterations. Moreover, Si also activates antioxidant system which helps in scavenging of free radicals generated under Meth herbicide stress in wheat seedlings. Application of Si to Meth treated wheat seedlings also up-regulated silicon transporter gene Lsi1 (silicon influx transporter) and some of the antioxidant enzyme genes. All together, the data indicate that Si has capability of alleviating Meth herbicide stress in wheat seedlings but it appears that endogenous NO has a positive role in this endeavour of Si.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2021.07.031 | DOI Listing |
Plants (Basel)
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 5000, Argentina.
Numerous studies have shown the potential effect of bioactive agents against weeds. In this study, we developed two binary formulations with nonanoic acid, citral, or thymoquinone as herbicides and evaluated their physicochemical properties. The presence of the bioactive compounds in the formulations was confirmed through FTIR spectroscopy.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Instituto Tecnológico de Sonora, 5 de Febrero 818, Col. Centro, Cd. Obregón 85000, Mexico.
Strain TE5 was isolated from a wheat ( L. subsp. ) rhizosphere grown in a commercial field of wheat in the Yaqui Valley in Mexico.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
The concurrent environmental challenges of invasive species and soil microplastic contamination increasingly affect agricultural ecosystems, yet their combined effects remain underexplored. This study investigates the interactive impact of the legacy effects of Canada goldenrod ( L.) invasion and soil microplastic contamination on wheat ( L.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
Soil salinization poses a significant challenge to global agriculture, particularly in arid and semi-arid regions like Xinjiang. , a halophytic plant adapted to saline-alkaline conditions, harbors endophytic microorganisms with potential plant growth-promoting properties. In this study, 177 endophytic bacterial strains were isolated from , and 11 key strains were identified through functional screening based on salt tolerance, nutrient solubilization, and growth-promoting traits.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China.
Halotolerant plant growth-promoting bacteria (HT-PGPB) have attracted considerable attention for their significant potential in mitigating salt stress in crops. However, the current exploration and development of HT-PGPB remain insufficient to meet the increasing demands of agriculture. In this study, an HT-PGPB isolated from coastal saline-alkali soil in the Yellow River Delta was identified as J2-5-19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!