A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An integrated flexible film as cathode for High-Performance Lithium-Sulfur battery. | LitMetric

An integrated flexible film as cathode for High-Performance Lithium-Sulfur battery.

J Colloid Interface Sci

Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China.

Published: January 2022

Poor cycling stability and low volumetric capacity of sulfur cathode prevents practical application of Lithium-sulfur (Li-S) batteries. Herein, we demonstrate a strategy to address the two drawbacks of sulfur cathode by synthesizing a compact and flexible film cathode with bilayer structure using a two-step vacuum filtration method. Two layers make up the sulfur cathode, active layer (sulfur-acethlene black (SC) spheres) and barrier layer (three dimensional MnO-graphene oxide-multi-walled carbon nanotubes (MnO-GO-CNTs) composites), which are integrated together by reduced graphene oxide (rGO) through self-binding. The rGO sheets provide an electrical conductive framework and a stable architecture to accommodate volume changes of sulfur. SC spheres stacked orderly between the rGO layers facilitate fast Li storage and energy release. Polar MnO-GO-CNTs composites with large specific surface area have not only afforded efficient sites for chemically binding polysulfides, but also provided fast electron transfer for accelerating polysulfides redox reaction. Consequently, the integrated film cathode exhibits an unprecedented cycling stability of ~0.0279% capacity decay per cycle over more than 600 cycles at 1C and high volumetric capacity of 1021.9 Ah L at 2C. Meanwhile, a foldable Li-S battery based on this flexible cathode is fabricated and shows excellent mechanical and electrochemical properties. The integrated flexible sulfur cathode of this study sheds light on the design strategies for application in flexible high volumetric capacity system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.08.138DOI Listing

Publication Analysis

Top Keywords

sulfur cathode
16
film cathode
12
volumetric capacity
12
integrated flexible
8
flexible film
8
cathode
8
cycling stability
8
mno-go-cnts composites
8
high volumetric
8
sulfur
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!