Climate suitability predictions for the cultivation of macadamia (Macadamia integrifolia) in Malawi using climate change scenarios.

PLoS One

Faculty of Science, Technology, Engineering & Mathematics, School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, The United Kingdom.

Published: November 2021

Climate change is altering suitable areas of crop species worldwide, with cascading effects on people reliant upon those crop species as food sources and for income generation. Macadamia is one of Malawi's most important and profitable crop species; however, climate change threatens its production. Thus, this study's objective is to quantitatively examine the potential impacts of climate change on the climate suitability for macadamia in Malawi. We utilized an ensemble model approach to predict the current and future (2050s) suitability of macadamia under two Representative Concentration Pathways (RCPs). We achieved a good model fit in determining suitability classes for macadamia (AUC = 0.9). The climatic variables that strongly influence macadamia's climatic suitability in Malawi are suggested to be the precipitation of the driest month (29.1%) and isothermality (17.3%). Under current climatic conditions, 57% (53,925 km2) of Malawi is climatically suitable for macadamia. Future projections suggest that climate change will decrease the suitable areas for macadamia by 18% (17,015 km2) and 21.6% (20,414 km2) based on RCP 4.5 and RCP 8.5, respectively, with the distribution of suitability shifting northwards in the 2050s. The southern and central regions of the country will suffer the greatest losses (≥ 8%), while the northern region will be the least impacted (4%). We conclude that our study provides critical evidence that climate change will reduce the suitable areas for macadamia production in Malawi, depending on climate drivers. Therefore area-specific adaptation strategies are required to build resilience among producers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428786PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257007PLOS

Publication Analysis

Top Keywords

climate change
24
suitable areas
12
crop species
12
climate
9
macadamia
9
climate suitability
8
suitability macadamia
8
change will
8
areas macadamia
8
change
6

Similar Publications

Stay Connected to Be Diverse!

Glob Chang Biol

January 2025

Aquatic Ecology, Department Biology, Ludwig-Maximilians - University Munich, München, Germany.

Plankton biodiversity is crucial for the functioning of aquatic ecosystems, influencing nutrient cycling, food web dynamics, and carbon storage. Global change and habitat destruction disrupt these ecosystems, reducing species diversity and ecosystem resilience. Connectivity between aquatic habitats supports biodiversity by enabling species migration, genetic diversity, and recovery from disturbances.

View Article and Find Full Text PDF

Comprehensive prediction of potential spatiotemporal distribution patterns, priority planting regions, and introduction adaptability of in the Chinese region.

Front Plant Sci

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.

The natural grassland in China is facing increasingly serious degradation. L., as an important native alpine grass, is widely used in the restoration and improvement of natural grassland.

View Article and Find Full Text PDF

Climate change poses significant challenges to global food security by altering precipitation patterns and increasing the frequency of extreme weather events such as droughts, heatwaves, and floods. These phenomena directly affect agricultural productivity, leading to lower crop yields and economic losses for farmers. This study leverages Artificial Intelligence (AI) and Explainable Artificial Intelligence (XAI) techniques to predict crop yields and assess the impacts of climate change on agriculture, providing a novel approach to understanding complex interactions between climatic and agronomic factors.

View Article and Find Full Text PDF

The impact of arbuscular mycorrhizal colonization on flooding response of .

Front Plant Sci

January 2025

Department of General and Applied Botany, Institute of Biology, Leipzig University, Leipzig, Germany.

Climate change is expected to lead to an increase in precipitation and flooding. Consequently, plants that are adapted to dry conditions have to adjust to frequent flooding periods. In this study, we investigate the flooding response of , a Mediterranean plant adapted to warm and dry conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!