Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Efficient indoor organic photovoltaics (OPVs) have attracted strong attention for their application in indoor electronic devices. However, the route to optimal photoactive film morphology toward high-performance indoor devices has remained obscure. The leakage current dominated by morphology exerts distinguishing influence on the performance under different illuminations. We have demonstrated that morphology reoptimization plays an important role in indoor OPVs, and their optimal structural features are different from what we laid out for outdoor devices. For indoor OPVs, in order to facilitate low leakage current, it is essential to enhance the crystallinity, phase separation, and domain purity, as well as keeping small surface roughness of the active layer. Furthermore, considering the reduced bimolecular recombination at low light intensity, we have shown that PM6:M36-based indoor devices can work effectively with a large ratio of the donor and acceptor. Our work correlating structure-performance relation and the route to optimal morphology outlines the control over device leakage current and recombination losses boosting the progress of efficient indoor OPVs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c09600 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!