With domestication, northward spread, and breeding, maize defence against root-herbivores relied on induced defences, decreasing levels of phytohormones involved in resistance, and increasing levels of a phytohormone involved in tolerance. We addressed whether a suite of maize (Zea mays mays) phytohormones and metabolites involved in herbivore defence were mediated by three successive processes: domestication, spread to North America, and modern breeding. With those processes, and following theoretical predictions, we expected to find: a change in defence strategy from reliance on induced defences to reliance on constitutive defences; decreasing levels of phytohormones involved in herbivore resistance, and; increasing levels of a phytohormone involved in herbivore tolerance. We tested those predictions by comparing phytohormone levels in seedlings exposed to root herbivory by Diabrotica virgifera virgifera among four plant types encompassing those processes: the maize ancestor Balsas teosinte (Zea mays parviglumis), Mexican maize landraces, USA maize landraces, and USA inbred maize cultivars. With domestication, maize transitioned from reliance on induced defences in teosinte to reliance on constitutive defences in maize, as predicted. One subset of metabolites putatively involved in herbivory defence (13-oxylipins) was suppressed with domestication, as predicted, though another was enhanced (9-oxylipins), and both were variably affected by spread and breeding. A phytohormone (indole-3-acetic acid) involved in tolerance was enhanced with domestication, and with spread and breeding, as predicted. These changes are consistent with documented changes in herbivory resistance and tolerance, and occurred coincidentally with cultivation in increasingly resource-rich environments, i.e., from wild to highly enriched agricultural environments. We concluded that herbivore defence evolution in crops may be mediated by processes spanning thousands of generations, e.g., domestication and spread, as well as by processes spanning tens of generations, e.g., breeding and agricultural intensification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-021-03720-2 | DOI Listing |
Plant Genome
March 2025
Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari Aldo Moro, Bari, Italy.
Wheat breeders are constantly looking for genes and alleles that increase grain yield. One key strategy is finding new genetic resources in the wild and domesticated gene pools of related species with genes affecting grain size. This study explored a natural population of Triticum turgidum (L.
View Article and Find Full Text PDFExpression and purification of recombinant proteins in is a bedrock technique in biochemistry and molecular biology. Expression optimization requires testing different combinations of solubility tags, affinity purification techniques, and site-specific proteases. This optimization is laborious and time consuming as these features are spread across different vector series and require different cloning strategies with varying efficiencies.
View Article and Find Full Text PDFEnviron Res
January 2025
INRAE, University of Montpellier, LBE, Av. des Étangs, 11100 Narbonne, France.
Clarithromycin, a common antibiotic found in domestic wastewater, persists even after treatment and can transfer to soils when treated wastewater (TWW) is used for irrigation. This residual antibiotic may exert selection pressure, promoting the spread of antibiotic resistance. While Predicted No Effect Concentrations (PNECs) are used in liquid media to predict resistance risks, PNEC values for soils, especially for clarithromycin, are lacking.
View Article and Find Full Text PDFComp Immunol Microbiol Infect Dis
January 2025
Laboratory of Epidemio-surveillance, Health, Production & Reproduction, Cell Therapy of Domestic and Wild Animals, Department of Veterinary Sciences, Faculty of Nature and Life Sciences, University of Chadli Bendjedid, El Tarf 36000, Algeria.
Animal trade has become a serious criminal practice in the world. Every day thousands of exotic wild animals, including reptiles, are farmed and sold worldwide. The illegal collection of turtles and tortoises remains completely unsupervised and represents a big challenge for responsible authorities.
View Article and Find Full Text PDFViruses
January 2025
Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil.
Domestic animals can share viral pathogens with humans, acting mainly as a bridge host. The genus hosts important zoonotic species that have emerged in urban areas worldwide. Nevertheless, the role of companion animals, such as dogs and cats, in the circulation of orthopoxviruses in urban areas remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!