This study aimed to explore the ability of texture parameters combining with machine learning methods in distinguishing intrahepatic cholangiocarcinoma (ICCA) and hepatic lymphoma (HL). A total of 28 patients with HL and 101 patients with ICCA were included. A total of 45 texture features were extracted by the software LifeX from contrast-enhanced computer tomography (CECT) images and 38 of them were eligible. A total of 5 feature selection methods and 9 feature classification methods were used to build the best diagnostic models, combining with the 10-fold cross-validation to assess the accuracy of these models. The discriminative ability of each model was evaluated by receiver operating characteristic analysis. A total of 45 predictive models were built by the cross combination of each selection and classification method to differentiate ICCA from HL. According to the results of test group, most of the models performed well with a large area under the curve (AUC) (>0.85) and high accuracy (>0.85). Random Forest (RF)_Linear Discriminant Analysis (LDA) (AUC  =  0.997, accuracy  =  0.969) was the best model among all the 45 models. Combining texture parameters from CECT with multiple machine learning models can differentiate ICCA and HL effectively, and RF_LDA performed the best in this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435928PMC
http://dx.doi.org/10.1177/15330338211039125DOI Listing

Publication Analysis

Top Keywords

machine learning
12
intrahepatic cholangiocarcinoma
8
hepatic lymphoma
8
contrast-enhanced computer
8
computer tomography
8
texture parameters
8
models combining
8
differentiate icca
8
models
6
differentiation intrahepatic
4

Similar Publications

Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.

Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.

View Article and Find Full Text PDF

Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.

View Article and Find Full Text PDF

In this paper, we propose a method to address the class imbalance learning in the classification of focal liver lesions (FLLs) from abdominal CT images. Class imbalance is a significant challenge in medical image analysis, making it difficult for machine learning models to learn to classify them accurately. To overcome this, we propose a class-wise combination of mixture-based data augmentation (CCDA) method that uses two mixture-based data augmentation techniques, MixUp and AugMix.

View Article and Find Full Text PDF

Effect of terahertz radiation on cells and cellular structures.

Front Optoelectron

January 2025

Institute of Physics, Saratov State University, Saratov, 410012, Russia.

The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!