We study the properties of the interface of water and the surfactant hexaethylene glycol monododecyl ether (C12E6) with a combination of heterodyne-detected vibrational sum frequency generation (HD-VSFG), Kelvin-probe measurements, and molecular dynamics (MD) simulations. We observe that the addition of the hydrogen-bonding surfactant C12E6, close to the critical micelle concentration (CMC), induces a drastic enhancement in the hydrogen bond strength of the water molecules close to the interface, as well as a flip in their net orientation. The mutual orientation of the water and C12E6 molecules leads to the emergence of a broad (∼3 nm) interface with a large electric field of ∼1 V/nm, as evidenced by the Kelvin-probe measurements and MD simulations. Our findings may open the door for the design of novel electric-field-tuned catalytic and light-harvesting systems anchored at the water-surfactant-air interface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c05112DOI Listing

Publication Analysis

Top Keywords

kelvin-probe measurements
8
interface
5
emergence electric
4
electric fields
4
fields water-c12e6
4
water-c12e6 surfactant
4
surfactant interface
4
interface study
4
study properties
4
properties interface
4

Similar Publications

Fermi Level Shifts of Organic Semiconductor Films in Ambient Air.

ACS Appl Mater Interfaces

January 2025

Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping SE-60174, Sweden.

Here, the Fermi level () shifts of several donor and acceptor materials in different atmospheres are systematically studied by following the work function (WF) changes with Kelvin probe measurements, ultraviolet photoelectron spectroscopy, and near-ambient pressure X-ray photoelectron spectroscopy. Reversible shifts are found with the trend of higher WFs measured in ambient air and lower WFs measured in high vacuum compared to the WFs measured in ultrahigh vacuum. The shifts are energy level and morphology-dependent, and two mechanisms are proposed: (1) competition between p-doping induced by O and HO/O complexes and n-doping induced by HO; (2) polar HO molecules preferentially modifying the ionization energy of one of the frontier molecular orbitals over the other.

View Article and Find Full Text PDF

To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials.

View Article and Find Full Text PDF

A step towards non-invasive diagnosis of diabetes mellitus using synthesized MOF-MXene hybrid material with extended gate field-effect transistor integration.

J Mater Chem B

December 2024

Laboratory of Sensors, Energy and Electronic devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India.

The increasing demand for non-invasive and non-enzymatic glucose sensors is driven by the objective of eliminating the need for blood pricks from the body and enabling enzyme-free detection of glucose for diagnosing diabetes mellitus. To address this need, we synthesized Ni MOF-MXene (Ni) hybrid material through a one-pot synthesis method, which acts as a catalyst to detect salivary glucose using an extended gate field effect transistor (EGFET) method. The resulting sensor exhibits good selectivity towards glucose over common interfering molecules such as sucrose, fructose, maltose, uric acid, and ascorbic acid under physiological conditions in saliva.

View Article and Find Full Text PDF

Copper nanoclusters (Cu NCs), synthesized by a one-pot synthesis method, were theoretically shown to exhibit a dipole moment and cause work function modification on a surface as observed from Kelvin probe measurement. Here, Cu NCs were used as an interfacial modifier in organic solar cells (OSCs). The effective engineering of the electron transporting layer/active layer interface using Cu NCs resulted in improved photovoltaic performance in fullerene and non-fullerene based OSCs.

View Article and Find Full Text PDF

In this paper, homogenization heat treatment and laser shock peening (LSP) processes were successfully carried out regulate the microstructure (grain size, residual stress, and element distribution, ) of the AZ31B magnesium alloy substrate surface. Based on the regulated AZ31B magnesium alloy substrate surface, it further explored and analyzed the mechanism and influence pattern of the coupling distribution of grain size and residual stress on the intergranular corrosion susceptibility of the substrate surface. Scanning electron microscopy (SEM) was used to observe the surface morphology, scanning Kelvin probe force microscopy (SKPFM) to observe the surface potential, zero resistance ammeter (ZRA) and scanning vibrating electrode technique (SVET) to measure the galvanic current on the surface, and electrochemical tests were conducted to evaluate its surface corrosion behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!