To guarantee a long lifetime of perovskite-based photovoltaics, the selected materials need to survive relatively high-temperature stress during the solar cell operation. Highly efficient n-i-p perovskite solar cells (PSCs) often degrade at high operational temperatures due to morphological instability of the hole transport material 2,2',7,7'-tetrakis (,-di--methoxyphenyl-amine)9,9'-spirobifluorene (Spiro-OMeTAD). We discovered that the detrimental large-domain spiro-OMeTAD crystallization is caused by the simultaneous presence of -butylpyridine (BP) additive and gold (Au) as a capping layer. Based on this discovery and our understanding, we demonstrated facile strategies that successfully stabilize the amorphous phase of spiro-OMeTAD film. As a result, the thermal stability of n-i-p PSCs is largely improved. After the spiro-OMeTAD films in the PSCs were stressed for 1032 h at 85 °C in the dark in nitrogen environment, reference PSCs retained only 22% of their initial average power conversion efficiency (PCE), while the best target PSCs retained 85% relative average PCE. Our work suggests facile ways to realize efficient and thermally stable spiro-OMeTAD containing n-i-p PSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c11227 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!