Structural Evolution, Electronic Structures, and Vibrational Properties of Anionic LuGe ( = 5-17) Clusters: From Lu-Linked to Lu-Encapsulated Configurations.

Inorg Chem

School of Chemical Engineering, Inner Mongolia University of Technology, and Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, Peoples Republic of China.

Published: September 2021

The structural evolution pattern and electronic properties of Lu-doped germanium anion clusters, LuGe ( = 5-17), have been investigated using a global search method combined with a double hybrid density functional theory and by comparing the theoretical PES spectra with the experimental ones. It is found that, for the structural growth patterns, a Lu-linked configuration is preferred for = 10-14 in which the Lu atom as a linker connects two Ge subclusters and a Lu-encapsulated Ge cage-like motif is preferred for = 15-17. The simulated PES spectra agree with experimental ones, revealing that the current global minimum structures are the true minima. The properties such as relative stability, charge transfer, highest-energy occupied molecular orbital-lowest-energy unoccupied molecular orbital (HOMO-LUMO) gap, IR, Raman, and ultraviolet-visible (UV-vis) spectra have been evaluated. The results of IR and Raman spectra could provide additional ways to experimentally identify the structure of these clusters. The results of stability, HOMO-LUMO gap, and UV-vis spectra could make the LuGe cluster the most suitable building block for further development as a potential optoelectronic material.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c02247DOI Listing

Publication Analysis

Top Keywords

structural evolution
8
luge 5-17
8
pes spectra
8
homo-lumo gap
8
uv-vis spectra
8
spectra
5
evolution electronic
4
electronic structures
4
structures vibrational
4
vibrational properties
4

Similar Publications

Enhancing the decomposition rate of ammonium perchlorate (AP), the most common oxidizer in solid propellants, is important for improving propellant performance. Metal organic frameworks (MOFs) have been developed as key materials for catalyzing AP decomposition, as they can achieve good dispersion of active sites through in-situ decomposition. Despite having considerable potential, the structural transformation process and catalytic performance of MOFs in AP decomposition are still unclear, which seriously hinders their application in the field of AP decomposition.

View Article and Find Full Text PDF

Evolution of Two-Dimensional Perovskite Films Under Atmospheric Exposure and Its Impact on Photovoltaic Performance.

ACS Appl Mater Interfaces

January 2025

Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.

Two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs) have garnered significant attention due to their enhanced stability compared with their three-dimensional counterparts. However, the power conversion efficiency (PCE) of 2D perovskite solar cells (2D-PSCs) remains lower than that of 3D-PSCs. Understanding the microstructural evolution of 2D perovskite films during fabrication is essential for improving their performance.

View Article and Find Full Text PDF

Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins.

View Article and Find Full Text PDF

Background: Tea-oil Camellia within the genus Camellia is renowned for its premium Camellia oil, often described as "Oriental olive oil". So far, only one partial mitochondrial genomes of Tea-oil Camellia have been published (no main Tea-oil Camellia cultivars), and comparative mitochondrial genomic studies of Camellia remain limited.

Results: In this study, we first reconstructed the entire mitochondrial genome of C.

View Article and Find Full Text PDF

Background: In this work, we implement a data-driven approach using an aggregation of several analytical methods to study the characteristics of COVID-19 daily infection and death time series and identify correlations and characteristic trends that can be corroborated to the time evolution of this disease. The datasets cover twelve distinct countries across six continents, from January 22, 2020 till March 1, 2022. This time span is partitioned into three windows: (1) pre-vaccine, (2) post-vaccine and pre-omicron (BA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!