Chiral macrocycles possess significant value in chiral science and supramolecular chemistry. Pillararenes, as a class of relatively young supramolecular macrocyclic hosts, have been widely used for host-guest recognition and self-assembly. Since the position of substituents on the benzene rings breaks the molecular symmetry (symmetric plane and symmetric center), pillararenes possess planar chirality. However, it is a great challenge to synthesize stable and resolvable enantiomers because of the easy rotation of the phenylene group. In this review, we summarize the construction methods of resolvable chiral pillararenes. We also focus on their applications in enantioselective recognition, chiral switches, chirality sensing, asymmetric catalysis, circularly polarized luminescence, metal-organic frameworks, and highly permeable membranes. Finally, we discuss the future research perspectives in this field of pillararene-based planar chiral materials. We hope that this review will encourage more researchers to work in this exciting field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cc03778a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!