Hsp100 chaperones disaggregate the aggregated proteins and are vital for maintenance of protein homeostasis. The level of Hsp100 synthesised in the cells has a bearing on the survival of plants under heat stress. The Hsp100 transcription machinery is activated within minutes of the onset of heat stress. The heat shock factor HsfA6a plays a major role in the transcriptional regulation of the Hsp101 gene in rice plants. Through yeast-2-hybrid library screening, we identified small heat shock proteins (sHSPs), Hsp70 and ubiquitin as HsfA6a interacting proteins (HIPs). The bimolecular fluorescence complementation assays showed the physical interaction of HsfA6a with Hsp16.9A-CI and Hsp18.0-CII in the cytosolic region and with cHsp70-1 in the nucleus. With the Hsp101 promoter: reporter gene assays, using yeast cells and rice protoplasts, we show that CI-sHsps and CII-sHsps are negative regulators and Hsp70 positive regulator of the HsfA6a activity in modulation of Hsp101 transcription. We also noted that the HsfA6a interactors, Hsp70 and CI-sHsps and CII-sHsps, physically interact with each other. We noted that HsfA6a binds with the CI-sHsp and Hsp70 promoters, implying that HsfA6a has a role in transcriptional regulation of its interacting proteins. Furthermore, we noted that the mutation of the ubiquitin/sumoylation acceptor site lysine 10 to alanine (K10A) of HsfA6a enhanced its DNA binding potential on the Hsp101 promoter, implying that these modifiers are possibly involved in modulation of HsfA6a activity. Our work shows that Hsp70, CI-sHsps and CII-sHsp, and ubiquitin proteins coordinate with HsfA6a in mediating the Hsp101 transcription process in rice.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.13552DOI Listing

Publication Analysis

Top Keywords

hsfa6a
10
ubiquitin proteins
8
heat stress
8
heat shock
8
role transcriptional
8
transcriptional regulation
8
interacting proteins
8
hsp101 promoter
8
ci-shsps cii-shsps
8
hsfa6a activity
8

Similar Publications

High temperature stress (HTS) is a serious threat to plant growth and development and to crop production in the context of global warming, and plant response to HTS is largely regulated at the transcriptional level by the actions of various transcription factors (TFs). However, whether and how homeodomain-leucine zipper (HD-Zip) TFs are involved in thermotolerance are unclear. Herein, we functionally characterized a pepper (Capsicum annuum) HD-Zip I TF CaHDZ15.

View Article and Find Full Text PDF

Drought stress can severely affect sugarcane growth and yield. The objective of this research was to identify candidate genes in sugarcane tillering seedlings in response to drought stress. We performed a comparative phenotypic, physiological and transcriptomic analysis of tiller seedlings of drought-stressed and well-watered "Guire 2" sugarcane, in a time-course experiment (5 days, 9 days and 15 days).

View Article and Find Full Text PDF

Arabidopsis MADS-box factor AGL16 is a negative regulator of plant response to salt stress by downregulating salt-responsive genes.

New Phytol

December 2021

School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China.

Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis.

View Article and Find Full Text PDF

Hsp100 chaperones disaggregate the aggregated proteins and are vital for maintenance of protein homeostasis. The level of Hsp100 synthesised in the cells has a bearing on the survival of plants under heat stress. The Hsp100 transcription machinery is activated within minutes of the onset of heat stress.

View Article and Find Full Text PDF

The role of Heat Shock Transcription Factor 6 ( & ) in response to abiotic stresses such as ABA, drought, salinity, drought, and osmotic stress is individually well established. Unfortunately, the functional redundancy between the and as well as the consequences of simultaneous editing of both in response to aforementioned stresses remains elusive. Therefore, this study was designed with the aim of addressing whether there is any functional redundancy between and as well as to decipher their role in abiotic stresses tolerance in , by using the CRISPR-Cas9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!