Anodic and cathodic biofilms coupled with electricity generation in single-chamber microbial fuel cell using activated sludge.

Bioprocess Biosyst Eng

Chemical Engineering and Pilot Plant Department, National Research Centre (NRC), El Buhouth St., 12622-Dokki, Cairo, Egypt.

Published: December 2021

Microbial fuel cell (MFC) is used to remove organic pollutants while generating electricity. Biocathode plays as an efficient electrocatalyst for accelerating the Oxidation Reduction Reaction (ORR) of oxygen in MFC. This study integrated biocathode into a single-chamber microbial fuel cell (BSCMFC) to produce electricity from an organic substrate using aerobic activated sludge to gain more insights into anodic and cathodic biofilms. The maximum power density, current density, chemical oxygen demand (COD) removal, and coulombic efficiency were 0.593 W m, 2.6 A m, 83 ± 8.4%, and 22 ± 2.5%, respectively. Extracellular polymeric substances (EPS) produced by biofilm from the biocathode were higher than the bioanode. Infrared spectroscopy and Scanning Electron Microscope (SEM) examined confirmed the presence of biofilm by the adhesion on electrodes. The dominant phyla in bioanode were Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, while the dominant phylum in the biocathode was Proteobacteria. Therefore, this study demonstrates the applicable use of BSCMFC for bioelectricity generation and pollution control.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-021-02632-5DOI Listing

Publication Analysis

Top Keywords

microbial fuel
12
fuel cell
12
anodic cathodic
8
cathodic biofilms
8
single-chamber microbial
8
activated sludge
8
biofilms coupled
4
coupled electricity
4
electricity generation
4
generation single-chamber
4

Similar Publications

Bioelectronic and photogenerated electron synergistic catalyzed removal of chlorhexidine: Degradation and mechanism.

J Hazard Mater

January 2025

College of Water Sciences, Beijing Normal University, Beijing 100875, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087,  China; National University of Singapore, Department of Civil and Environmental Engineering, 1 Engineering Drive 2, 117576, Singapore. Electronic address:

The extensive use of the antimicrobial compound chlorhexidine (CHD) has emerged as a significant threat to both the ecological environment and human health. To address this concern, a photo-electrochemical cell-microbial fuel cell (PMFC) system was studied for CHD removal by incorporating, for the first time, the photocatalysts black phosphorus/carbon nitride (BPCN) and CuO into the bioanode and air cathode of an MFC, respectively. By combining electrochemical, macro-genomic, and intermediate product analyses, the underlying mechanisms of bioelectronic and photoelectronic synergies were elucidated.

View Article and Find Full Text PDF

Metabolic alterations, including hypermetabolism, lipid imbalances, and glucose dysregulation, are pivotal contributors to the onset and progression of Amyotrophic Lateral Sclerosis (ALS). These changes exacerbate systemic energy deficits, heighten oxidative stress, and fuel neuroinflammation. Simultaneously, gastrointestinal dysfunction and gut microbiota (GM) dysbiosis intensify disease pathology by driving immune dysregulation, compromising the intestinal barrier, and altering gut-brain axis (GBA) signaling, and lastly advancing neurodegeneration.

View Article and Find Full Text PDF

Revealed mechanism of 3D-open-microarray boosting exoelectrogens Geobacter enrichment and extracellular electron transfer for high power generation in microbial fuel cells.

Bioresour Technol

January 2025

Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065 PR China. Electronic address:

Theanode enables raised microbial fuel cells (MFCs) performance via in-situ growth electroactive material. However, the role of fabricated microstructures in electroactive bacteria loading and extracellular electron transfer (EET) has been paid less attention. Here, MoS2 nanosheets are custom grown on carbon cloth to construct anode models with diverse surface microstructures.

View Article and Find Full Text PDF

Fuel accumulation shapes post-fire fuel decomposition through soil heating effects on plants, fungi, and soil chemistry.

Sci Total Environ

January 2025

University of Kansas, Kansas Biological Survey, 2101 Constant Avenue, Takeru Higuchi Hall, Lawrence, KS 66047, USA; University of Kansas, Ecology & Evolutionary Biology, 1200 Sunnyside Avenue Haworth Hall, Lawrence, KS 66045, USA.

Forty percent of terrestrial ecosystems require recurrent fires driven by feedbacks between fire and plant fuels. The accumulation of fine fuels in these ecosystems play a key role in fire intensity, which alters soil nutrients and shapes soil microbial and plant community responses to fire. Changes to post-fire plant fuel production are well known to feed back to future fires, but post-fire decomposition of new fuels is poorly understood.

View Article and Find Full Text PDF

Valorization of mixed blackwater/agricultural wastes for bioelectricity and biohydrogen production: A microbial treatment pathway.

Heliyon

January 2025

African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.

The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!