Endothelial cell damage is an important pathological basis for the deterioration of acute ischemia stroke. Our previous studies have been exploring the mechanism of blood-brain barrier (BBB) endothelial cell injury in the early stage of cerebral ischemia. Exosomes act as an important intercellular player in neurovascular communication. However, the characteristic of exosomes derived from BBB endothelial cells in early ischemic stroke is poorly understood. We exposed cultured brain microvascular endothelial cells (bEnd.3) to 3 h oxygen glucose deprivation (OGD) to mimic early cerebral ischemia in vitro and compared miRome and surface protein contents of exosomes derived from bEnd.3 cells by miRNA sequencing and the proximity barcoding assay (PBA). A total of 346 differentially miRNA (159 upregulated and 187 downregulated) were identified via miRNA-Seq in bEnd.3 cells after exposure to OGD for 3 h. Moreover, Gene Ontology (GO) and KEGG pathway analyses showed that cell proliferation- and angiogenesis-associated miRNAs were significantly affected. The abnormal changes in top eight miRNAs were further verified by a quantitative polymerase chain reaction (qPCR). PBA experiments showed that the numbers of exosomes carrying the following proteins increased significantly under ischemia, including bFGF, CD146, EPHA2, ABCB5, and ITGB2. These proteins were related to angiogenesis, cell proliferation, and cell inflammation. The network analysis combining PBA data with miRNA-Seq data showed that 79 miRNAs were related to 24 membrane proteins and predicted that there were surface proteins associated with a variety of miRNA molecules, such as ITGA9, XIAP, ADAM1, ITGA2, ITGA3, PDPN, and ITGB1. Meanwhile, there were miRNAs related to various surface proteins including miR-410-3p, miR-378b, and miR-1960. Taken together, our data demonstrated for the first time the changes of exosomal miRNAs and surface protein profiles derived from ischemic microvascular endothelial cells, which may provide new therapeutic targets for BBB protection in ischemic stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412952PMC
http://dx.doi.org/10.1021/acsomega.1c03248DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
surface protein
12
exosomes derived
12
microvascular endothelial
12
cerebral ischemia
12
brain microvascular
8
cells early
8
early cerebral
8
endothelial cell
8
bbb endothelial
8

Similar Publications

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

Skin-Integrated Electrogenetic Regulation of Vasculature for Accelerated Wound Healing.

Adv Sci (Weinh)

January 2025

ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.

Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).

View Article and Find Full Text PDF

A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) maintains brain homeostasis but also prevents most drugs from entering the brain. No paracellular diffusion of solutes is allowed because of tight junctions that are made impermeable by the expression of claudin5 (CLDN5) by brain endothelial cells. The possibility of regulating the BBB permeability in a transient and reversible fashion is in strong demand for the pharmacological treatment of brain diseases.

View Article and Find Full Text PDF

Objective: Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!