Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fuel consumption is the most important parameter that characterizes the fuel economy of the engines. Instead of manual fuel consumption calibration based on the experience of engineers, the establishment of a fuel consumption model greatly reduces the time and cost of multiparameter calibration and optimization of modern engines and realizes the further exploration of the engine fuel economy potential. Based on the bench test, one-dimensional engine simulation, and design of experiment, a partially shared neural network with its sampling and training method to establish the engine fuel consumption model is proposed in this paper in view of the lack of discrete working conditions in the traditional neural network model. The results show that the proposed partially shared neural network applying Gauss distribution sampling and the frozen training method, after an analysis of the number of hidden neurons and epochs, showed optimal prediction accuracy and excellent robustness in full coverage over the whole load region on the test data set obtained through the bench test. Eighty-seven percent of the prediction errors are less than 3%, all prediction errors are less than 10%, and the value is improved to 0.954 on the test data set.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412949 | PMC |
http://dx.doi.org/10.1021/acsomega.1c02403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!