A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fuel Consumption Modeling of a Turbocharged Gasoline Engine Based on a Partially Shared Neural Network. | LitMetric

Fuel consumption is the most important parameter that characterizes the fuel economy of the engines. Instead of manual fuel consumption calibration based on the experience of engineers, the establishment of a fuel consumption model greatly reduces the time and cost of multiparameter calibration and optimization of modern engines and realizes the further exploration of the engine fuel economy potential. Based on the bench test, one-dimensional engine simulation, and design of experiment, a partially shared neural network with its sampling and training method to establish the engine fuel consumption model is proposed in this paper in view of the lack of discrete working conditions in the traditional neural network model. The results show that the proposed partially shared neural network applying Gauss distribution sampling and the frozen training method, after an analysis of the number of hidden neurons and epochs, showed optimal prediction accuracy and excellent robustness in full coverage over the whole load region on the test data set obtained through the bench test. Eighty-seven percent of the prediction errors are less than 3%, all prediction errors are less than 10%, and the value is improved to 0.954 on the test data set.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412949PMC
http://dx.doi.org/10.1021/acsomega.1c02403DOI Listing

Publication Analysis

Top Keywords

fuel consumption
20
neural network
16
partially shared
12
shared neural
12
fuel economy
8
consumption model
8
engine fuel
8
bench test
8
training method
8
model proposed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!