The phase noise of microwaves extracted from optical frequency combs is fundamentally limited by thermal and shot noise, which is inherent in photodetection. Saturation of a photodiode due to the high peak power of ultrashort optical pulses, however, prohibits further scaling of white phase noise by increasing incident optical power. Here we demonstrate that the photocurrent pulse shaping via balanced photodetection, which is accomplished by replacing a single photodiode with a balanced photodetector (BPD) and delaying one of the optical pulses, provides a simple and efficient optical-to-electrical interface to increase achievable microwave power and reduces the corresponding thermal noise-limited phase noise by 6-dB. By analysing contributing noise sources, we also show that the thermal noise floor can reach - 166 dBc/Hz even at a low photocurrent of 2-mA (4-mW optical input per photodiode) when using a p-i-n BPD. This finding may be useful for on-chip microwave generation, which consists of standard p-i-n structure photodiodes with relatively low saturation optical power.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426341PMC
http://dx.doi.org/10.1038/s41598-021-97378-1DOI Listing

Publication Analysis

Top Keywords

phase noise
12
optical frequency
8
frequency combs
8
photocurrent pulse
8
pulse shaping
8
shaping balanced
8
balanced photodetection
8
optical pulses
8
optical power
8
optical
7

Similar Publications

Denoising complex-valued diffusion MR images using a two-step, nonlocal principal component analysis approach.

Magn Reson Med

March 2025

Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.

Purpose: To propose a two-step, nonlocal principal component analysis (PCA) method and demonstrate its utility for denoising complex diffusion MR images with a few diffusion directions.

Methods: A two-step denoising pipeline was implemented to ensure accurate patch selection even with high noise levels and was coupled with data preprocessing for g-factor normalization and phase stabilization before data denoising with a nonlocal PCA algorithm. At the heart of our proposed pipeline was the use of a data-driven optimal shrinkage algorithm to manipulate the singular values in a way that would optimally estimate the noise-free signal.

View Article and Find Full Text PDF

Vulnerability of fault-tolerant topological quantum error correction to quantum deviations in code space.

PNAS Nexus

March 2025

State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of  China.

Quantum computers face significant challenges from quantum deviations or coherent noise, particularly during gate operations, which pose a complex threat to the efficacy of quantum error correction (QEC) protocols. Here we scrutinize the performance of the topological toric code in 2D under the dual influence of stochastic noise and quantum deviations, especially during the critical phases of initial state preparation and error detection facilitated by multiqubit entanglement gates. By mapping the multiround error detection protocol-from the inception of an imperfectly prepared code state via imperfect stabilizer measurements-to a statistical mechanical model (3D gauge theory coupled with 2D gauge theory), we establish a link between the error threshold and the model's phase transition.

View Article and Find Full Text PDF

This study proposes a novel framework using graph convolutional networks to analyze and interpret X-ray diffraction patterns, addressing challenges in phase identification for multi-phase materials. By representing X-ray diffraction patterns as graphs, the framework captures both local and global relationships between diffraction peaks, enabling accurate phase identification even in the presence of overlapping peaks and noisy data. The framework outperforms traditional machine learning models, achieving a precision of 0.

View Article and Find Full Text PDF

Optical amplification, crucial for modern communication, primarily relies on erbium-doped fibre amplifiers (EDFAs). Yet, EDFAs only cover a portion of the low-loss spectrum of optical fibres. This has motivated the development of amplifiers operating beyond the erbium gain window.

View Article and Find Full Text PDF

Noise-induced synchronization in coupled quantum oscillators.

J Chem Phys

March 2025

Department of Physics, University of Houston, Houston, Texas 77204, USA.

We consider the quantum dynamics of a pair of coupled quantum oscillators coupled to a common correlated dissipative environment. The resulting equations of motion for both the operator moments and covariances can be integrated analytically using the Lyapunov equations. We find that for fully correlated and fully anti-correlated environments, the oscillators relax into a phase-synchronized state that persists for long-times when the two oscillators are nearly resonant and (essentially) forever if the two oscillators are in resonance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!