In the past decade, natural deep eutectic solvents (NADESs) as green and sustainable extraction solvents with great potential for the efficient extraction of bioactive compounds from the plants are emerging. In this study, a microwave-assisted technology is used to prepare natural deep eutectic solvents. And natural deep eutectic solvents as pretreatment solvents coupled with microwave-assisted hydrodistillation (MAHD) for isolating essential oil (EO) derived from turmeric (Curcuma longa L.) is investigated. To improve the essential oil yield of turmeric (Curcuma longa L.) as a target, various factors affecting extraction efficiency including the type and amount of natural deep eutectic solvents, pretreatment time, pretreatment temperature and hydrodistillation (HD) time are discussed and optimized through central composite design (CCD) of the response surface methodology (RSM). The optimal conditions are as follows: natural deep eutectic solvent composed of choline chloride and oxalic acid (molar ratio with 1:1) as a pretreatment solvent, an amount of 60 g, a pretreatment time of 5 min, a pretreatment temperature of 84 ºC, a hydrodistillation time of 76 min. Under the optimum conditions, the highest essential oil yield of 0.85% is achieved. Additionally, the essential oil is analyzed by using gas chromatography-mass spectrometry (GC-MS), with a total of 49 compounds being identified. Through combining natural deep eutectic solvents with a microwave-assisted hydrodistillation technique, this work provides an eco-friendly extraction way of isolating essential oil, which boosts development in the monitoring other spice quality field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5650/jos.ess20368 | DOI Listing |
Mol Ecol
January 2025
Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA.
Environmental variation often drives evolutionary processes like population differentiation, local adaptation and speciation. We used genome-scale data to investigate the contribution of environmental variation to evolution of the North Caribbean bark anole (Anolis distichus), a widespread common lizard that exhibits impressive phenotypic variation across varying habitats on the island of Hispaniola. We obtained new double-digest restriction-associated DNA sequence data (ddRADseq) from nearly 200 individuals and used 53 GIS data layers representing a range of environmental variables.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
Background: Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis and response to immunotherapy in LUAD patients.
View Article and Find Full Text PDFPsychon Bull Rev
January 2025
NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China.
We examined the intricate mechanisms underlying visual processing of complex motion stimuli by measuring the detection sensitivity to contraction and expansion patterns and the discrimination sensitivity to the location of the center of motion (CoM) in various real and unreal optic flow stimuli. We conducted two experiments (N = 20 each) and compared responses to both "real" optic flow stimuli containing information about self-movement in a three-dimensional scene and "unreal" optic flow stimuli lacking such information. We found that detection sensitivity to contraction surpassed that to expansion patterns for unreal optic flow stimuli, whereas this trend was reversed for real optic flow stimuli.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mine Safety, North China Institute of Science and Technology, Langfang, 065201, China.
The soft-rock roadways in kilometer-deep coal mines are often damaged by large deformation and have to be periodically expanded and repaired, which seriously restricts the safe and efficient production of coal mines. A typical soft-rock roadway in a kilometer-deep coal mine is selected as the engineering, and the main reasons for roadway deformation are analyzed, and the ground stress and mechanical characteristics are obtained. The Flac numerical model, which can accurately reflect the deformation characteristics of surrounding rock in kilometer-deep soft-rock roadway, has been constructed, and the evolution laws of stress field and its damage mechanism have been analyzed with the vertical stress, vertical displacement and plastic zone.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Basic Sciences, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, 050010, Colombia.
The NLRP3 inflammasome, regulated by TLR4, plays a pivotal role in periodontitis by mediating inflammatory cytokine release and bone loss induced by Porphyromonas gingivalis. Periodontal disease creates a hypoxic environment, favoring anaerobic bacteria survival and exacerbating inflammation. The NLRP3 inflammasome triggers pyroptosis, a programmed cell death that amplifies inflammation and tissue damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!