Our study was aimed at exploring the roles of lncRNA RP11-400K9.4 (RP11-400K9.4) on hypoxia/reoxygenation (H/R) -induced cardiomyocytes apoptosis. H/R model was constructed in rat primary cardiomyocytes (PC) and H9c2 cells. In this study, the results showed that H/R significantly induced the apoptosis of PC and H9c2 cells. The expression of RP11-400K9.4 was upregulated in H/R-induced PC and H9c2 cells, but miR-423 expression was downregulated. Silencing RP11-400K9.4 could attenuate H/R-induced apoptosis in PC and H9c2 cells. We also found that miR-423 was a potential target of RP11-400K9.4. The effect of silencing RP11-400K9.4 on H/R-induced apoptosis of PC and H9c2 cells was significantly reversed by miR-423 inhibitor transfection. Furthermore, our data confirmed that silencing RP11-400K9.4 promoted the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) /extracellular signal-regulated kinase (ERK) pathways and these phenomena can be reversed by miR-423 inhibitor transfection. In conclusion, our study demonstrated that silencing RP11-400K9.4 could alleviate H/R-induced cardiomyocytes damages via suppressing apoptosis by targeting miR-423 with the activation of PI3K/AKT and MEK/ERK signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1536/ihj.20-828 | DOI Listing |
J Am Heart Assoc
January 2025
Division of Cardiovascular Science, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK.
Background: Heart failure with preserved ejection fraction (HFpEF) is linked to prolonged endoplasmic reticulum (ER) stress. P21-activated kinase 2 (Pak2) facilitates a protective ER stress response. This study explores the mechanism and role of Pak2 in HFpEF pathology.
View Article and Find Full Text PDFAm J Hypertens
January 2025
Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University; Xuzhou 221004, China.
Background: Polo-like kinase 2 (PLK2) is associated with cardiac fibrosis in patients with atrial fibrillation. However, the role of PLK2 in sepsis-induced cardiac injury has not been fully elucidated. We hypothesize that PLK2 may participate in the progression of sepsis-induced cardiac injury.
View Article and Find Full Text PDFEur J Med Chem
January 2025
School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland. Electronic address:
The natural bioactive products myxin and iodinin are phenazine 5,10-dioxides possessing potent anti-bacterial and anti-cancer activity in vitro. This work describes the synthesis and derivatization of new myxin and iodinin regioisomers, developed from 1,3-dihydroxyphenazine 5,10-dioxide. Compounds were evaluated for activity towards M.
View Article and Find Full Text PDFCardiovasc Drugs Ther
January 2025
Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China.
Purpose: Cardiac inflammation is a basic pathological process of diabetic cardiomyopathy (DCM). Inflammatory response is closely related to pyroptosis, which is a recently identified programmed cell death type. Curcumin (CUR) is a polyphenol extracted from turmeric and has been reported to be crucial in alleviating pyroptosis in DCM.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Introduction: Taohong Siwu decoction (THSWD), a traditional prescription for enhancing blood circulation and eliminating blood stasis, primarily comprises peach kernel, safflower, angelica, chuanxiong, and rehmannia. Modified Taohong Siwu decoction (MTHSWD), an advanced version of THSWD, incorporates additional ingredients such as epimedium, cinnamon, and salvia miltiorrhiza. This addition serves to augment its efficacy in warming yang and promoting blood circulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!