NMDAR-dependent somatic potentiation of synaptic inputs is correlated with β amyloid-mediated neuronal hyperactivity.

Transl Neurodegener

MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.

Published: September 2021

Background: β Amyloid (Aβ)-mediated neuronal hyperactivity, a key feature of the early stage of Alzheimer's disease (AD), is recently proposed to be initiated by the suppression of glutamate reuptake. Nevertheless, the underlying mechanism by which the impaired glutamate reuptake causes neuronal hyperactivity remains unclear. Chronic suppression of the glutamate reuptake causes accumulation of ambient glutamate that could diffuse from synaptic sites at the dendrites to the soma to elevate the tonic activation of somatic N-methyl-D-aspartate receptors (NMDARs). However, less attention has been paid to the potential role of tonic activity change in extrasynaptic glutamate receptors (GluRs) located at the neuronal soma on generation of neuronal hyperactivity.

Methods: Whole-cell patch-clamp recordings were performed on CA1 pyramidal neurons in acute hippocampal slices exposed to TFB-threo-β-benzyloxyaspartic acid (TBOA) or human Aβ peptide oligomer. A series of dendritic patch-clamp recordings were made at different distances from the soma to identify the location of the changes in synaptic inputs. Moreover, single-channel recording in the cell-attached mode was performed to investigate the activity changes of single NMDARs at the soma.

Results: Blocking glutamate uptake with either TBOA or the human Aβ peptide oligomer elicited potentiation of synaptic inputs in CA1 hippocampal neurons. Strikingly, this potentiation  specifically occurred at the soma, depending on the activation of somatic GluN2B-containing NMDARs (GluN2B-NMDARs) and accompanied by a substantial and persistent increment in the open probability of somatic NMDARs. Blocking the activity of GluN2B-NMDARs at the soma completely reversed both the TBOA-induced or the Aβ-induced somatic potentiation and neuronal hyperactivity.

Conclusions: The somatic potentiation of synaptic inputs may represent a novel amplification mechanism that elevates cell excitability and thus contributes to neuronal hyperactivity initiated by impaired glutamate reuptake in AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424869PMC
http://dx.doi.org/10.1186/s40035-021-00260-3DOI Listing

Publication Analysis

Top Keywords

synaptic inputs
16
neuronal hyperactivity
16
glutamate reuptake
16
somatic potentiation
12
potentiation synaptic
12
suppression glutamate
8
impaired glutamate
8
activation somatic
8
patch-clamp recordings
8
tboa human
8

Similar Publications

The hippocampus forms memories of our experiences by registering processed sensory information in coactive populations of excitatory principal cells or ensembles. Fast-spiking parvalbumin-expressing inhibitory neurons (PV INs) in the dentate gyrus (DG)-CA3/CA2 circuit contribute to memory encoding by exerting precise temporal control of excitatory principal cell activity through mossy fiber-dependent feed-forward inhibition. PV INs respond to input-specific information by coordinating changes in their intrinsic excitability, input-output synaptic-connectivity, synaptic-physiology and synaptic-plasticity, referred to here as experience-dependent PV IN plasticity, to influence hippocampal functions.

View Article and Find Full Text PDF

Unilateral whisker denervation activates plasticity mechanisms and circuit adaptations in adults. Single nucleus RNA sequencing and multiplex fluorescence in situ hybridization revealed differentially expressed genes related to altered glutamate receptor distributions and synaptogenesis in thalamocortical (TC) recipient layer 4 (L4) neurons of the sensory cortex, specifically those receiving input from the intact whiskers after whisker denervation. Electrophysiology detected increased spontaneous excitatory events at L4 neurons, confirming an increase in synaptic connections.

View Article and Find Full Text PDF

Principles of visual cortex excitatory microcircuit organization.

Innovation (Camb)

January 2025

Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada.

Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells.

View Article and Find Full Text PDF

Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.

View Article and Find Full Text PDF

Direction selectivity is a fundamental feature in the visual system. In the retina, direction selectivity is independently computed by ON and OFF circuits. However, the advantages of extracting directional information from these two independent circuits are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!