The Dual Role of Bridging Phenylene in an Extended Bipyridine System for High-Voltage and Stable Two-Electron Storage in Redox Flow Batteries.

ACS Appl Mater Interfaces

MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Published: September 2021

Aqueous organic redox flow batteries (AORFBs) are regarded as a promising solution for grid-scale and sustainable energy storage, but some long-standing problems such as low energy density and cycling stability should be resolved. Herein, a highly soluble bipyridine modified with a bridging phenylene group and two quaternary ammonium terminals, namely, , was synthesized and used as an ultralow-potential and two-electron storage anolyte for AORFBs. The phenylene group, which is linked but not coplanar with the two pyridinium redox centers, can thus prevent their communication and result in an exceptionally low redox potential (-0.77 V vs standard hydrogen electrode, 2e). Moreover, the introduction of a phenylene group can warrant a certain degree of large π-conjugation effects and mitigate the intramolecular Coulombic repulsion between the two positively charged pyridinium centers, thus helping to enhance the electrochemical stability. When paired with 4-trimethylammonium-TEMPO as the catholyte, enabled an exceptionally high cell voltage up to 1.71 V. The AORFB delivers outstanding battery performances, specifically, ∼89% energy efficiency, ∼100% Coulombic efficiency, and ∼99.94% capacity retention per cycle during a long-term cycling process. The two overlapped single-electron reductions of from the initial cationic form to the monoradical form and then to the quinoid form during the charging process were clearly verified by a series of spectroscopic techniques, including no-deuterium nuclear magnetic resonance and electron paramagnetic resonance. This work presents a significant improvement for the construction of high-voltage AORFBs by virtue of the designability, diversity, and tunability of multiredox organic molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c09019DOI Listing

Publication Analysis

Top Keywords

phenylene group
12
bridging phenylene
8
two-electron storage
8
redox flow
8
flow batteries
8
dual role
4
role bridging
4
phenylene
4
phenylene extended
4
extended bipyridine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!