Objective: To examine the relationship between the time constant of oxygen uptake kinetics during the onset of exercise (τVO2) estimated from a single exercise bout and that obtained from three averaged exercise bouts in individuals with stroke.

Methods: Twenty participants with stroke performed three bouts of a constant-load pedaling exercise at approximately 80% of the workload corresponding to the ventilatory threshold to estimate τVO2. The VO2 data from the first trial of three bouts were used to estimate τVO2 for a single bout. Additionally, data collected from three bouts were ensemble-averaged to obtain τVO2 for three averaged bouts as the criterion.

Results: There was a very high correlation between τVO2 for a single bout (34.8±14.0 seconds) and τVO2 for three averaged bouts (38.5±13.4 seconds) (r=0.926, p<0.001). However, τVO2 for a single bout was smaller than that for three averaged bouts (p=0.006).

Conclusion: τVO2 for a single bout could reflect the relative difference in τVO2 for three averaged bouts among individuals with stroke. However, it should be noted that τVO2 for a single bout may be underestimated compared to τVO2 for three averaged bouts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435463PMC
http://dx.doi.org/10.5535/arm.21087DOI Listing

Publication Analysis

Top Keywords

single bout
12
three averaged
12
three bouts
12
time constant
8
constant oxygen
8
oxygen uptake
8
uptake kinetics
8
estimate τvo2
8
τvo2 single
8
τvo2 three
8

Similar Publications

Background: Exercise-induced hypoalgesia (EIH) is characterized by a reduction in pain perception and sensitivity across both exercising and non-exercising body parts during and after a single bout of exercise. EIH is mediated through central and peripheral mechanisms; however, the specific effect of muscle contraction alone on EIH remains unclear. Moreover, previous studies on electrical muscle stimulation (EMS) have primarily focused on local analgesic effects, often relying on subjective pain reports.

View Article and Find Full Text PDF

Visceral Fat Affects Heart Rate Recovery but Not the Heart Rate Response Post-Single Bout of Vigorous Exercise: A Cross-Sectional Study in Non-Obese and Healthy Participants.

Sports (Basel)

November 2024

Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n°97, 95123 Catania, Italy.

Body composition could influence exercise physiology. However, no one has ever studied the effect of visceral fat (VF) on heart rate (HR) trends during and after exercise by using bioimpedance analysis (BIA). This study aims to investigate BIA variables as predictors of HR trends during vigorous exercise.

View Article and Find Full Text PDF

This 11-year case study describes the acoustic behaviour of a resident Indian Ocean humpback dolphin during commercial swim-with-dolphin activities in Mozambique. Combining data collected using low-cost action cameras with full bandwidth hydrophone recordings, we identified a temporally stable stereotyped whistle contour that met the SIGnature IDentification bout criteria. This whistle was produced with potential information-enhancing features (bi-phonation and subtle variations in frequency modulation).

View Article and Find Full Text PDF

Prior studies have investigated the efficacy of a single 1 min bout of stair-stepping on reducing postprandial blood glucose (BG) in the morning, but none have investigated this effect in the evening when glycaemic responses are larger due to circadian regulation and β-cell responsiveness. This work investigated the efficacy of a 1 min bout of self-selected, low-intensity stair-stepping performed in the evening on reducing the change from baseline to the 60 min time point postprandial BG. Thirty people (43% male, 29 (10) years) participated in a randomized crossover-controlled trial.

View Article and Find Full Text PDF

Deep dry needling (DDN) is a method to treat muscle trigger points (TrPs) often found in persons with neuromuscular pain and spasticity. Currently, its neurophysiological actions are not well established. Thus, to understand how DDN affects spinal cord physiology, we investigated the effects of TrP DDN on spinal reflexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!